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ABSTRACT

The production, transmission, and delivery of cost—efficient energy to supply
ever-increasing peak loads/demands along with a quest for developing a low-carbon
economy require significant evolutions in the power grid operations. Lower prices of vast
natural gas resources in the United States, Fukushima nuclear disaster, higher and more
intense energy consumptions in China and India, issues related to energy security, and
recent Middle East conflicts, have urged decisions makers throughout the world to look
into other means of generating electricity locally.

As the world look to combat climate changes, a shift from carbon-based fuels to
non-carbon based fuels is inevitable. It is possible to knock a lot of carbon out of the
electric power system through large-scale integrations of renewable sources. However,
the variability of distributed generation assets (such as wind and solar) in the electricity
grid has introduced major reliability challenges/risks for power grid operators.

While spearheading sustainable and reliable power grid operations, this
dissertation develops a multi-stakeholder approach to power grid operation design;
aiming to address economic, security, and environmental challenges of the constrained
electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration,
as distributed and mobile storage assets to support high penetrations of variable and
renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is
considered to demonstrate the bidirectional role of EV fleets both as a provider and
consumer of energy in securing a sustainable power grid operation. The V2G concept is

regarded as a novel, low-cost, low-emission and sustainable strategy that can address

Xiv



challenges involve with using renewable energy sources, which require means of storing
large quantities of energy.

The proposed optimization modeling is the application of Mixed-Integer Linear
Programing (MILP) to large-scale systems to solve the hourly security-constrained unit
commitment (SCUC) — an optimal scheduling concept in the economic operation of
electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate
different scenarios concerning the uncertainties in the operation of power grid system.

Further, in order to expedite the real-time solution of the proposed approach for
large-scale power systems, this dissertation considers a two-stage model using the
Benders Decomposition (BD) and applies the BD method to the hourly SCUC solution of
electric power systems with significant uncertainties.

The numerical simulation demonstrate that the utilization of smart EV fleets in
power grid systems would ensure a sustainable grid operation with lower carbon
footprints, smoother integration of renewable sources, higher security, and lower power
grid operation costs. Further, simulation results indicate that intelligent-controlled mode,
in which electric power system operators control the EV fleets charge/discharge decisions
based on the system operation requirements, is more effective compare to the rule-based
mode, in which consumers control charging/discharging decisions. The numerical
simulations, additionally, illustrate the effectiveness of the proposed MILP approach and
its potentials as an optimization tool for sustainable operation of large scale electric

power systems.
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CHAPTER 1

INTRODUCTION

. This dissertation focuses on the optimization of operation planning of electric

power systems in support of sustainable development in a low carbon economy.

1.1 Sustainability of Power System Operation

The sustainability of a developing economy is extensively influenced by recent
evolutions in the energy industry. Industrialized nations are increasingly in search for
cheaper, cleaner, and more reliable sources of energy to strengthen their economies and
developing countries would require the same for accelerating their progress in a
competitive arena. As Peter Voser [Yer12] stated, “Energy is the oxygen of the economy
and the life-blood of growth”. Furthermore, energy, as cornerstone of every developing
economy, is an imperative input to nearly all of the goods and services of the modern
world. As such, steady and affordable energy supplies are the key to reigniting,
sustaining, and boosting the economic growth in every nation.

Energy development which supports the needs of the present generation without
jeopardizing the ability of future generations to meet their own energy needs is referred to
as sustainable energy development '. The development of a sustainable energy
infrastructure is driven by climate policies, energy security, and economics. Accordingly,
addressing resource scarcity for an unbiased sustainable economic development is one of

the greatest priorities of our time.

' This definition is inferred from the most frequently quoted general definition of sustainability which is
from the World Commission on Environment and Development (WCED), also known as the “Brundtland
Commission”,



The planning philosophy for the existing electricity grid is a transformation from
an era when energy was inexpensive and abundant while addressing the rising demand
was the primary concern. We are at evolution to a period when clean energy is at
premium, power systems require an adaption to low greenhouse gas (GHG) emission
technologies for electricity supply, and customers request greater awareness and
participation in energy utilization. Moreover, operating at absolute minimum cost is no
longer the only condition for electric power generation due to the pressing public demand
for cleaner air [Yerl3]. According to the June 2013 report published by the International
Energy Agency [Birl13], the world is not on track to address the target agreed upon by
governments to limit the long-term escalation in the average global temperature to 2
degrees Celsius (2DC) per the Copenhagen Accord. Yet, many of the environmental
problems countries facing today result from fossil fuel dependence. These impacts
include global warming, air quality deterioration, oil spills, and acid rain® [EPA13]. The
energy sector is accountable for about two-thirds of greenhouse-gas emissions, as fossil
fuels are facilitating more than 80% of global energy consumption [Birl3].

Energy supply is facilitated through a multifaceted network that initiates with
extraction from an array of sources, to transformation, storage, distribution and ultimately
utilization. Significant demand growth coupled with global megatrends including climate
change, and resource scarcity demand reshuffling of this vital network. Intuitively

difficult tradeoffs will need to be balanced as the electric utility industry progresses

? Global warming - refers to a gradual increase in the overall temperature near Earth's surface. It is
generally attributed to the greenhouse effect caused by increased levels of carbon dioxide,
chlorofluorocarbons, and other pollutants.

Oil Spill- refers to the release of a liquid petroleum hydrocarbon into the environment, especially marine
areas, due to human activity.

Acid rain — refers to a rain or any other form of precipitation that is unusually acidic. It can have
damaging effects on plants, aquatic animals and infrastructure. it is caused by emissions of sulfur dioxide
and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids



toward sustainability and transition to a more modern grid; while still meeting its
principal obligation of facilitating affordable, reliable, and safe electricity.

As such, electric power companies are facing a formidable challenge of meeting
the imperatives of energy triangle in improving their economic, environmental, and social
sustainability performance. State-of-the-art solutions must be found to guarantee that the
world’s economy is powered in a socially and environmentally manner that is also
economic while preventing a potentially disastrous global warming. Furthermore, electric
power companies face certain challenges for updating their operations to include
pioneering technologies and addressing incipient national security issues®. In other words,

sustainability is gone from a nice-to-do to a must-to-do in the electric utility industry.

1.2 Electric Power Systems
1.2.1 Background. The electric power industry around the globe has experienced an
era of rapid and critical changes concerning the way electricity is generated, transmitted,
and distributed, since the mid-1980s. The necessity for more efficiency in power
production and delivery, traditionally under the control of federal and state governments,
has resulted in privatization, restructuring, and, ultimately, deregulation of power sectors
in several countries including the United States.

An electric power system is divided into four major parts including: generation,
transmission, distribution, and loads. Commonly several generators are operated in
parallel in the electric power system to generate the required power and connected at a

common point called a bus. The generated power is transmitted at high voltage,

* Fossil fuel dependence means that, to ensure our supply, we may be forced to protect foreign sources of
oil. Further, reliance on foreign sources also creates a danger of fuel price shocks or shortages if supply is
disrupted.



distributed at medium level voltage, and delivered to load points at low voltage level.
Conventionally, electric power networks consist of large centrally-controlled generators
connected to the high voltage side of the network and loads at the low voltage side. As
such, the power flows from the high voltage side, where generators are connected, to the
low voltage side of the network, where medium and small size loads are connected.
Figure 1.1 illustrates simplified layout of the conventional electrical grid before

alternative energy sources were added in recent years [Li05].
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Figure 1.1. Conventional Electrical Grid*

1.2.2 Electric Power System Operation. In the electric power system operation,
generating units are classified based on the number of hours they are in operation as
follows:

e Base-load units - are the ones that run at 100% of their capacity on a 24-hour

basis. Large fossil fired units and nuclear units fall into this category. The

* Source - oncor.com



megawatt generation of these units must remain constant throughout the

scheduling horizon to keep the system in thermal balance.

e Intermediate units - are the manageable units that run most of the time but not
essentially fully loaded. These units are used for power regulation. The
hydropower units and small thermal units are regarded as intermediate units.

e Peaking units - are committed for a few hours in a day. Gas turbine generators,
cascaded and pumped storage hydro units, and compressed gas units are
considered as peaking units.

Natural gas units are considered as peaking units since, in contrast to coal or
nuclear units, they can start quickly and ramp up to the capacity in a very short period of
time. In comparison, natural gas units are cleaner and more expensive. If adequate
generation to address off peak hour loads is kept on line during the day, the expensive
generating units would be turned on for supplying peak hour loads in the generation
scheduling horizon and would be shut down at off-peak periods in order to minimize the
ED of generating units [Sha02]

In order to promote energy efficiency, alleviate the dependence on fossil fuel, and
boost the security of transmission-constrained electric power systems, distributed
generating units are employed progressively at load centers. Furthermore, embraced as a
key solution to the trilateral challenges of economic supply, security, and climate change,
renewable energy continues to play a pivotal role in today’s energy stock; providing a
sustainable basis for greening and growing the economy. For example, in the US, the
installed wind base has spiraled nearly five-fold since 2006, from 11.6 GW to over 50

GW at the end of 2012. Before 2006, the highest annual rate of deployment in the United



States had been around 2 GW, but since then the industry has revealed it is capable of
adding ten or more GW per year. Consequently, the abundant renewable energy resources
which are independent of fuel price variations play a major role in modern electric power
system operations [Yerl3].

The emergence of Smart Grid (SG) has initiated a new revolution in the power

sector. A SG is an electricity transmission and distribution network that has the capability
to quickly integrate, simplify and understand large amounts of information and utilize it
properly by making intensive use of both automation and information and
communication technologies (ICTs). Smart grids have profoundly changed the way
electricity is produced, consumed and distributed. Smart grid novel network structure
allows for efficient use of distributed energy resources (DERs) (including distributed
generation, renewable energy sources and distributed energy storage). Smart grid applies
a cluster of loads using energy demand response (DR)’ for offering significant control
capacities in electric power system operations [Ball 1].
1.2.3 Economics of Electric Power System Operation. The extreme variations in
power delivery between peak and off peak hours in the generation scheduling horizon
would require expensive generating units which are generally scheduled for supplying
peak loads to be shut down at off-peak hours to minimize the fuel cost for SCUC and
SCED of generating units.

Unit Commitment (UC) and Economic Dispatch (ED) are two basic concepts in

the economic operation of electric power systems. SCUC refers to the economic

* Demand-Response is defined as fluctuations in electric consumption by end-use customers from their
regular usage patterns in response to variations in the price of electricity over time, or to incentive
payments designed to encourage lower electricity use at times of high wholesale market prices or when
system reliability is threatened.



scheduling of generating units for supplying the hourly load while satisfying all operation
constraints for generating units and transmission power systems. Short-term UC will
outline the hourly On/Off status of thermal units over a day while contemplating the cost
and addressing physical constraints for starting-up and shutting down of thermal units.
ED would determine the least cost operation of an electric power system by dispatching
the available electricity generation resources to supply the hourly system load, while
satisfying the operation constraints of available generation resources [Li0S].

1.2.4 Electric Power System Operation Risk Management. Although fossil fuels are
still the leading energy source for the world’s economic engine, provision of renewable
sources will have to globally overshadow the future energy architecture, to enhance and
ultimately replace the more-polluting conventional energy sources. As the world looks to
combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is
inevitable. It is possible to knock a lot of carbon out of the electric power system through
large-scale integrations of renewable sources. Given proper scales, clean energy has the
potential to support the balance of the energy triangle in improving their economic,
environmental, and social sustainability performance. According to International Energy
Agency [Birl3], escalated share of power generation from renewables, as well as natural
gas in tandem with limited use of the least efficient coal-fired plants would curb
emissions by 640 gigatonnes (Gt) in 2020 and help efforts to restrain local air pollutions.
According to World Wind Energy Association [WWEI13], the total installed global wind
power capacity has increased almost ten-fold between 2000 and 2010, and jumped from

18 gigawatts (GW) to 175 GW.



The main shortcoming of renewables such as solar and wind power is that they
must be tailored to a specific area to make best usage of local conditions (i.e. high
radiation or major winds). Further, intermittency is the major challenge for renewables.
While traditionally large thermal power plants can be operated as base power supply, and
many can ramp up and down to address electricity demand fluctuations, renewable
generation assets can fluctuate fairly rapidly and dramatically at random hours of a day.

When large-scale renewables are employed, the periodic availability of supply
will have a significant impact on energy security. Basically, renewable sources are at the
mercy of nature, in that if the sun doesn't shine or the wind doesn't blow then solar panels
and wind farms will be ineffective. In the case of wind turbines, the supply could be
negatively interrelated with the hourly load since the wind generation is frequently higher
at night when the hourly demand is lower.

Producing and maintaining enough power to deal with peak loads on top of the
urge for developing a low-carbon economy require significant evolutions in the
electricity grid infrastructure. One way to accelerate this transformation is to store energy
when demand is less and put that energy back on the grid when demand spikes back up.

As variable renewable generating resources contribute a growing share of power
production in the grid, it becomes more challenging to match supply and demand and to
smooth out the variability of renewable sources. As such, the higher the penetration level
of renewable generation, the higher will be the need for costly and rather fast backup
generation so that the electric power system security is not jeopardized when renewable
energy resources introduce a significant level of uncertainty into generation portfolios

and electric power system operations [Mas04].



Smart grids could immensely support the integration of intermittent renewable
technologies into the conventional electricity grids, which will be of paramount
importance. Number of key technologies must be developed to transform current,
outdated grids to smart ones. Additionally, new business models, capital, political will
and, most importantly a collaborative innovation approach are needed to ease this
transformation.

One promising methodology for resolving the variability of renewables is the
coordination of renewable energy resources with distributed energy storage systems. The
coordinated system is viewed as an attractive multi-mode generating unit example which
may be used for mitigating transmission flow congestions, lowering operating costs by
shutting down peaking units, and reducing system emissions. Batteries play a significant
role among the storage alternatives which is because of the possibility of swift charging
and discharging. Thus, a battery storage system can improve the reliability of energy
supply during peak demand hours and captivate wind energy surplus during the off peak
periods when demand is lower than output [AdiO1].

The problem is that the battery technology is not where we need it to be in terms
of energy density and cost. The total operating cost of wind turbines escalates by adding
storage or spinning reserve expenses. Further, an efficient control system is required to
shrink the associated cost by extending the battery life [Khal0]. As such utilities cannot
afford to buy large and central batteries in order to implement the battery storage
scenario.

That is where the distributed storage in EVs can come in and play a constructive

role. EV batteries are often considered as a potential source of distributed storage which
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can be charged at night by wind turbines. Furthermore, replacing internal combustion
engine cars with more EVs on the road can significantly lower CO» levels. According to
IEA [Birll], For every $1 of investment avoided in the power sector before 2020, an
additional $4.30 would need to be spent after 2020 to compensate for increased GHG
emissions.

Although behavioral aspects of providing storage while maintaining flexibility
and mobility to EV owners could pose complex tradeoffs. Moreover, the battery of an
individual vehicle is a trivial resource with a minute influence on the grid. Individual
batteries in today’s EVs have approximately 25 Kilowatt hour (kWh) of capacity as
compared to multi-megawatt-hour batteries that would be required for utility-scale power
storage. As such, an individual battery only appears as a noise in the system. However,
large aggregations of EV batteries could represent a potential storage unit for electric
power system applications. For the purpose of the study in this chapter, EVs are
aggregated both on supply side (to provide power for demand balancing) and on demand
side (to consume at proper times). Aggregated EVs consider several EV fleets.

Although at present the market for EVs is very limited, but it is anticipated to
flourish with advances in new technologies, predominantly in the area of high energy and
power density batteries. The introduction of EVs as distributed storage would pave the
way towards a sustainable growth with a significant impact on electric power supply
systems.

The integration of aggregated fleets of EVs into the electricity grid as distributed
resources (V2G). In V2G strategy, EV storage is charged at low price hours and provides

the stored charges back to the grid when electricity prices are high. V2G has the potential
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to extensively reduce renewable energy variability, shrink the carbon footprint of both
transportation and utility sectors, and minimize power shortages in a cost-effective and
secure manner. To sustain an economic growth, V2G provides a migration path towards
energy independence. By merging the smart grid technology with aggregated EV fleets as
distributed battery storage, we will have an opportunity to provide ample resources for
peak load reductions. EV fleets as distributed battery storage device can facilitate the
balance of supply and demand which could otherwise make it difficult to stabilize the

system frequency [Zahl2].

1.3 Dissertation Goal and Objectives

This study is the application of MILP and BD to large-scale systems. It uses
power systems as an example and focuses on the optimization modeling of electric power
system operations in support of sustainable developments.

The main goal and objectives of the study in this dissertation is to develop a
multi-stakeholder approach to power grid operation design; aiming to address economic,
social, and environmental challenges of the constrained electricity generation.

This dissertation investigates the modeling of large-scale Electric Vehicle (EV)
integration in electric power systems for compensation the high penetration of wind
energy. The study introduces optimization methods for minimizing the operation cost and
limiting fossil fuel emissions, as it considers power transmission constraints for supplying
the least cost supply options to load centers. A scenario-based MCS approach is
developed to evaluate uncertainties involved in the operation of electric power systems;
including the forecast error in the hourly wind forecast, hourly load forecast errors, and

random outages of generation and transmission components. Further, this dissertation
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investigate role of storage mobility of EVs in firming the variability of renewable energy
sources.

The rest of this dissertation is organized into 6 chapters as described below:

1.4 Employed Mathematical Modeling Approaches
Chapter 2 provides a general view of the mathematical modeling employed in this

dissertation. SCUC is discussed and MILP and Lagrangian Relaxation (LR) methods are

compared. Further, BD and scenario-Based MCS applied to stochastic simulation models
are explained.

1.5 Deterministic Coordination Of Thermal Generating Units With Distributed
Battery Storage to Enhance the Security and the Economics Of Power Grid
Operation Considering Emission Constraints
Chapter 3 presents steps involve to develop an environmentally benign

optimization model that facilitates the reduction in GHG emissions while optimizing the

daily operation cost of electric power systems. Stationary EV fleets are deployed as
distributed load and storage facilities; namely as virtual power plants. The hourly EV
fleet dis/charge decisions are imposed by power system operators. The battery in EV
fleets will function as controllable load in order to levelize the hourly system load during
off-peak hours and generation resource during peak hours to provide the additional
capacity to the grid in order to minimize the daily operation cost while alleviating GHG
emissions’.

Several studies have explored both the potential promise and the possible pitfalls

of EV integrations into the power grid, and examined its impact on the power system

® Numerous substances act as GHG when emitted into the air. The primary concern, due to the volume of
its emissions in energy production, is carbon dioxide (CO,) and carbon dioxide equivalent (CO,,).
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operation. The 2012 report by Downing et al. [Dow11] evaluates the potential for plug-in
vehicle as a new source of balancing services to smooth the daily demand profile. Their
findings indicate that the UK plug-in vehicle park of 2020 would be capable of delivering
an average of 6% of the country’s projected daily grid balancing requirement for that
year. According to International energy Agency [Birll] in Organization for Economic
Co-operation and Development (OECD) North America, OECD Europe, OECD Pacific
and China, the deployment of smart grid technologies alone would restrain the escalation
in peak load between 2010 and 2050 to 19% with intelligent EV-load scheduling and
12% when combined with extensive use of V2G, compared with 29% in a baseline case
in which no smart grid technologies are utilized.

The integration of EVs may bring potential challenges to electric utility
particularly at the distribution level. Shao, et al. study [Sha09] implies that the load
created by plug-in-hybrid-vehicles (PHEVs) in some cases may surpass the distribution
transformer capacity. A comprehensive approach for assessing the effect of different
levels of PHEV penetration on distribution network investments and incremental energy
losses is presented by Fernandez, et al. [Ferl 1a].

Wang et al., [Wanl2] analyzed the impact of three different EV load models on
the grid load curve and on the load rate and peak-valley difference of the grid, and the
impact of different scales of EVs on the grid. Their findings indicate that the regional EV
load should be estimated beforehand in order to relieve the adverse effects of EVs on
power grid operations. Considering discharging process of EVs, Mets, et al. [Metl 1],
Stroehle, et al., [Strl1] explored EV charging tactics and their effects on local power

distribution networks of a residential zone. Authors investigated the optimal EV battery
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dis/charging scheduling to attain peak shaving, alleviate load intermittencies, and reduce
electric mobility costs.

In this chapter, EV fleets are considered as stationary and distributed energy
storage devices for enhancing power system operations. While most of the previous
studies only look at the dispatch size without considering the transmission constraints, we
are offering a more comprehensive solution. A deterministic SCUC algorithm is
developed to coordinate the optimal hourly commitment and dispatch of thermal units
and aggregated EV fleets considering transmission constraints. The proposed model’s
emphasis is on presenting a framework to effectively integrate stationary fleets of EV as
distributed energy sources in power grids. The proposed formulation represents a multi-
stakeholder model aiming to address economic, social, and environmental challenges of
the constrained electricity generation.

The optimization of day-ahead hourly SCUC is facilitated through MILP.
Considering the large-scale nature of the coordination problem, BD is considered as a
practical solution for the real-time implementation of the proposed method. The BD
deployment would simplify the complexity of the optimization problem by decomposing
the original large-scale MILP problem into one integer program master (MIP) problem
and linear programing (LP) sub-problems. An iterative process between the master
problem and sub-problems delivers a minimized cost solution for generation scheduling
while addressing network and emission constraints.

1.6 Deterministic Coordination Of Thermal Generating Units, Variable

Renewable Sources and Aggregated EV fleets for Sustainable Operation of

Power Grid Systems

Chapter 4 depicts a sustainable model that has the potential to accelerate green-
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growth. The proposed methodology in this chapter discusses the modeling of aggregated
EV fleets as stationary distributed load and energy storage facilities for wind energy,
while addressing emission constraints. It examines the coordination between the storage
and the renewable energy sources on the optimal operation cost of security-constrained
power systems and their carbon footprint. The model is designed to establish a
sustainable, low-carbon energy complex beyond fossil fuels and nuclear energy in an
efficient, cost-effective manner.

Previous studies have illustrated that EVs could produce substantial profits while
offering grid ancillary services. Andersson, et al. [And10] investigated the regulating
power markets of PHEVs in both Sweden, and Germany. The simulation results implies
that the German regulating power markets contribute significantly higher profit for
PHEV than the Swedish markets; maximum average profits generated on the German
markets are in the range 30-80 € per vehicle and month. Fernandes, et al. [Ferl 1b] study
demonstrated that, adaptation of V2G strategy, improves system operation by flattening
the demand curve and reducing operational reserves requirements causing a sharp cut in
total and average system operation costs.

Valentine, et al., [Val13] considered the integration of wind energy and smart
charging of EVs into the wholesale electricity market of the New York Control Area.
Their results illustrate that grid integration of wind power and V2G can significantly
benefit the NYCA as independent system-level resources via substantial cutbacks in
wholesale energy market costs.

Pillai, et al. [Pil12] conducted a study on typical wind dominated distribution and

transmission networks in Denmark. Their analysis shows that EVs based aggregated
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battery storage systems provide superior performance than the thermal generation sources
to facilitate smooth and robust grid regulation services in electric power systems with
high penetration levels of wind power. Their results indicate “EV integration of around
10% is capable of providing sufficient grid regulation services in Danish electric power
systems to support wind power penetration of around 50% in Denmark.” Tomic, et al.
[Tom07] investigated the economic potentials of EVs for participating in regulation
services. Raghavan et al. [Ragl0Q] and Lukic et al. [Luk08] focused on storage
technologies and power electronic grid-connection interfaces for facilitating large-scale
adoptions of PEVs.

Saber, et al. [Sabl1] addresses the role of PEV in the integration of renewable
energy resources. They employed Particle Swarm Optimization (PSO)’ to minimize
operation cost and emission, in order to make a successful bridge between the electricity
and transportation infrastructures.

Most of the previous studies only look at the dispatch size without considering the
transmission constraints. This study is considering a bigger picture of the power system’s
operation, and offering a more comprehensive solution which is more appropriate for
large-scale systems such as power grid. In this study, MILP is applied for the
optimization of the day-ahead hourly deterministic SCUC considering the transmission
constraints. Further, considering the large-scale nature of the coordination problem, BD is
considered as a feasible solution for the real-time implementation. The employment of
BD would ease the complexity of the optimization problem by decomposing the original

large-scale MILP problem into one integer program master (MIP) problem and linear

7PSO is a bioinspired algorithm based on the behavior of flock of birds and school of fishes, and it has
similarities to other population-based evolutionary algorithms.
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programing (LP) sub-problems. An iterative process between the master problem and
sub-problems conveys a minimized cost solution for generation scheduling while taking
into account the network and emission constraints. This is a multi-stakeholder model
pinpointing the challenges of energy supply, security, and climate change.

1.7 V2G for Sustainable Development in an Uncertain Environment — Stochastic

Coordination of Thermal Units, Renewable Energy Sources, and Stationary

EV fleets

Chapter 5 identifies strategies for a larger integration of variable generation
resources without compromising the electric power system security in a scenario based
approach. Hourly load and wind energy uncertainties and random outages of generation
and transmission components are also taken into consideration. This chapter evaluates the
potential for utilizing stationary fleets of electric vehicles (EVs) as distributed storage, in
an uncertain environment. The proposed model mitigates energy imbalances caused by
the integration of variable renewable sources in electric power systems. For the purpose
of the study in this chapter, EVs are considered stationary as various studies indicate that
most vehicles are parked an average of 90% of the time [Jen08], [Wir08].

The assimilation of high integration levels of wind power (greater than 30% of
energy) into interconnected electric power systems necessitates the redesign of
conventional electric power systems and operating practices [Ack0S]. Although an
increase in the geographic distribution and number of wind turbines alleviates the
temporal variability of wind generation, and shrinks the wind forecasting errors, however,
the seasonal wind patterns and electricity demand profile may not be correlated. Hence,
demand and generation disparities can happen [Harl0]. Furthermore, according to

[Lun08], the wind energy surplus is more challenging to manage than wind energy
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shortages, since the wind energy surplus corresponds to the best economic return on wind
energy investments that has not been attained properly for mitigating emissions.
Numerous methods can be adopted to address this challenge including the integration of
wind energy with flexible thermal power plants (¢.g. gas turbines), enlargement of
transmission system for better grid assimilation, and the utilization of energy storage,
ranging from batteries, ultra capacitors, compressed-air storage, flywheels, fuel cell
systems or hydroelectric power plants with storage reservoirs [Deni1], [Str07].

Several studies have investigated the economic analysis of V2G technology in the
literature. For instance, [Zho(09] evaluate V2G feasibility in the context of the UK
electricity market. De Los Rios, et al. [Dell2] examines the opportunities for V2G-
enabled EVs to recognize revenues from the regulation market that offset operating costs,
making them more cost competitive with conventional vehicles. [Ricl3] explores the
feasibility of a premium tariff rate for V2G power, using Ontario, Canada as a case study,
similar to existing feed-in-tariff (FIT) programs for intermittent sources.

Previous studies have demonstrated that EVs could produce substantial profits
while offering grid ancillary services. [Borl2] evaluates the possibility of integrating a
fleet of EVs mingled with large penetration of wind generation into the grid system in
northeastern Brazil to regularize possible energy imbalances. [Batl2] examines the role
of V2G systems as a support to energy management within realistic configurations of
small electric energy systems (SEESs) including intermittent sources, such as Microgrid.
Clement et al., [Clel1] investigated the coordinated charging and discharging of EVS,

where the objective function is to minimize the power losses; their findings indicate that
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combination of renewable sources and PHEVs, as distributed storage, can more
efficiently match the consumption and generation.

The Hedegaard, et al. [Hed12] study assessed how a large-scale implementation
of EVs towards 2030 would impact the electric power systems of five Northern European
countries, Denmark, Finland, Germany, Norway, and Sweden; simulation results implies
that when smartly charged/discharged , EVs can enable significantly higher wind power
penetration.

Mullan, et al. [Mull2] investigated the viability of V2G concept in Western
Australia, the smallest wholesale electricity market in the world, from technical,
economic and commercial point of view. [Ekml11] examined the impacts of multiple
EVs' charging strategies on the balance between wind power production and
consumption in the future Danish electric power system scenario. Further, another big
chunk of pollutants is coming from transportation sector which currently faces challenges
to mitigate climate change, and alleviate reliance on oil products. EVs have the benefit of
increasing security of supply by shrinking the transport sector’s dependency on oil.

While most of the previous studies addressed the economic aspects of the
integration of EVs into electric power systems, they overlook the transmission system
security consideration offered by the EV interconnection and its daily profile in electric
power systems. This chapter focuses on a practical methodology that has the potential to
advance energy sector strategies regarding sustainability, keep the sector on track to
address the 2DC climate goals by 2050 while addressing natural security issues. MILP is
applied to the optimization of the day-ahead hourly stochastic SCUC while taking into

account the network and emission constraints as well as uncertainties. Further,
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considering the large-scale nature of the coordination problem, BD is applied as a

feasible solution for the real-time implementation.

1.8 Spearheading the push to fulfill large energy demand requirements in a
sustainable manner: Stochastic Coordination of Thermal Units, Renewable
Energy Sources, and EV fleets — considering EV Mobility
Chapter 6 spearheads the push to fulfill today’s large energy demand

requirements in a sustainable manner. This chapter investigates operational strategies for

reliable and efficient integration of renewables at the distribution level. The proposed
large-scale stochastic optimization modeling examines the bi-directional role of
aggregated EV fleets on the power systems operation with a scenario based approach.

Electric vehicles represent hourly distributed and mobile demands in power
systems which could also provide distributed storage to power grids (V2G) . Unlike
conventional storage capabilities, the grid-connection storage topography of EVs may
vary during the daily operation of power systems. EVs consume energy according to their
driving requirements.

Several studies have been conducted regarding the bi-directional role of EVs and
their influence on the electric grid. However, they often neglected topological grid
operation constraints [Tom07],[Kem05a],[KemO05b].

[Ragl2],[Glo08],[Lu09] studies unanimously came into conclusion that V2G
concept’s bi-directional power flow would moderate uncertainties imposed on power
grids by the high penetration of renewable energy resources. The EV mobility would also

affect potential costs/revenues in regional electricity markets. The electricity market

issues of PEV integration were presented in [KemO0S5b]. Storage technologies and power
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electronic grid-connection interfaces for enabling large-scale adoptions of EVs are
discussed in references [Lee09] and [Luk08].

An investigation by Public Ultilities Fortnightly examined the annual potential
revenue of a PHEV owner selling energy to the power grid for regulatory and spinning
reserve purposes [Let06]. [Metl2] presented an approach to simulate large vehicle fleets
on the basis of individual driving profiles; investigating the conflicting relationship
between user mobility and grid.

[Hed12] analyzed the influence of the intelligent EVs’ charge/discharge on the
power systems of five Northern European countries, including: Denmark, Finland,
Germany, Norway, and Sweden. Their results indicate that EVs facilitate significantly
increased wind power investments in all of the countries analyzed, and can reduce the
need for new coal/natural gas power capacities if charge/discharge intelligently. The
significant potential for financial return when the V2G service is used for frequency
regulation is investigated in [Whill].

Coordinated charging and discharging is investigated in [Cle11]; their result
indicates that uncoordinated charging of EVs in distribution grid can lead to local grid
problems. In order to make a more accurate forecast of the technical potential of electric
vehicles as dispersed energy storages or controllable loads, [Rol13] introduced a
simplified stochastic model based on nonhomogeneous semi-Markov processes for
modeling the load behavior of electric vehicles.

Most of the previous studies overlooked the transmission constraints. We are
offering a more comprehensive solution which is more appropriate for large-scale

systems such as power system grid. The contribution of this study include the modeling
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of large-scale EV integration as a mobile distributed load and storage facilities and their
impacts on the optimal operation of network-constrained power systems, and their carbon
footprint. Further, hourly load and wind energy forecast errors, random outages of
generation and transmission components, random driving patterns of EVs are taken into
consideration in the proposed modeling approach. In this study mixed integer linear
programing (MILP) is applied for the optimization of the day-ahead hourly stochastic
security-constrained unit commitment considering the transmission, and EV mobility
constraints. Further, considering the large scale nature of the coordination problem,
Benders decomposition (BD) is considered as a feasible solution for the real-time
implementation. As proof of validation, practicality, and reliability of the proposed

modeling approach, comparison among three scenarios/case studies is presented.

1.9  Conclusion & Summary

Chapter 7 provides a brief summary, and draws a comprehensive conclusion from
all the above studies. The results indicate that the applications of renewable energy
sources and the intelligent assimilation of EV fleets (both as a provider and a consumer
of energy) offer potentials for alleviating peak demands, mitigating variability and
intermittency of wind generation, minimizing power grid operation costs and hourly wind
curtailments, removing transmission flow congestions, and limiting the environmental
impacts of fossil fuel-based thermal generating units in the operation of electric electric

power systems.
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CHAPTER 2

EMPLOYED MATHEMATICAL MODELING APPROACHES

This chapter provides an overview of the mathematical modeling approaches

employed in this dissertation.

2.1  Security Constrained Unit Commitment (SCUC)

People utilize less electricity on Saturdays than on weekdays, less on Sundays
than on Saturdays, and at a lesser rate between midnight and early mornings than during
the day, therefore, utilities’ daily load patterns exhibit extreme variability between peak
and off peak hours. It is possible that some of the units will be operating close to their
minimum generating limit during the off-peak period if adequate generation to meet the
peak is kept on line throughout the day. A system operator’s challenge is to decide which
units should be taken offline and for how long. It is preferable to use an optimum or
suboptimum operating strategy based on economic criteria. In other words, meeting the
power demand at minimum fuel cost utilizing an optimal mix of different power plants is

a vital condition in electric power system operation.

UC and ED are two basic optimal scheduling concepts in the economic operation
of electric power systems. The optimal UC of thermal systems, results in a great saving
for electric utilities. The UC problem is to optimally run (turn ON/OFF and dispatch) a
set of generating units over a given time horizon while addressing projected load
demands, spinning and operating reserve requirements, minimum ON/OFF time and
ramping limits of generating units, generating capacity limits, emission constraints, and

so on with the least system production cost. ED would determine the least cost operation
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of an electric power system by dispatching the available electricity generation resources
to supply the hourly system load. while satisfying the operation constraints of available
generation resources [Sha02]. ED controls the electric power system’s status in real time
as system conditions evolves; since majority of thermal generating units are not able to
reverse their On/Off status within a short period of time (e.g., 5-10 minutes).

Mathematically, SCUC is a non-convex, nonlinear, large-scale, mixed-integer
optimization problem with a large number of binary variables, continuous and discrete
control variables, and a series of prevailing equality and inequality constraints. [Li05].
Addressing which units should be on/off is the integer part, and how much power should
be dispatched on transmission lines is the continuous part; as such we are dealing with a
MILP problem.

Several optimization techniques, including enumeration, priority listing, dynamic
programming (DP), Lagrangian relaxation (LR), mixed-integer programming (MIP), and
heuristic based methods (e.g., genetic algorithms, artificial neural networks, expert and
fuzzy systems) have been deployed for achieving a near optimal solution and minimizing
the operating cost, while fulfilling the physical operation constraints. Nevertheless,
perceived bottlenecks such as the enumeration calculation, DP’s high dimensionality, and
heuristic solution’s fine-tuning are obstacles to practical applications of UC. With the
development of improved optimization techniques, Lagrangian relaxation (LR), and
Mixed Integer Programming (MIP) optimization techniques are most widely applied to

UC for unraveling day-ahead and real-time generation scheduling problems.

2.2 LR and MILP Methods

The LR method focuses on finding a proper co-ordination approach to generate
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feasible primal solutions, while minimizing the duality gap. The technique consists of
relaxing system constraints, linearizing the augmented item and decomposing the relaxed
Lagrangian objective function into subproblems for each unit. The LR method applies the
dual optimization technique to a non-convex UC problem with discrete variables for
calculating the generating unit status. The basic idea for applying LR is to adjoin
coupling constraints (e.g., power balance, reserve requirements) to the objective function
by using Lagrangian multipliers. The relaxed UC problem is further decomposed into
subproblems for individual generating units. So, the solution of UC is obtained by
solving smaller sub-problems. The main difficulty with the LR methods is that, because
of the non-convexities of the UC problem, heuristic procedures are required to find
feasible solutions, which may be suboptimal. [Yan12].

A MIP solution is the optimization of a linear function with integer and

continuous variables. For example:

MinCTx st. Aix=b

A2x=b1
1<x<u

x; integer for some j
where : C, by, by, 1, u are vectors and A, and A; are matrices.

The MIP method could obtain a solution that is more optimal than that of LR in a
finite number of steps. This feature facilitates broader applications of the MIP method in
power markets. Moreover, it provides a flexible and accurate modeling framework; so
that it is easier to add constraints to the MIP model and achieve an optimal solution,
without involving heuristics, which could dramatically accelerate the development of UC

and facilitate its applications to large-scale electric power systems [Sha05]. In addition,
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during the search of the problem tree, information on the proximity to the optimal
solution is available. Efficient MILP software packages such as the branch-and-cut
algorithm have been developed, and optimized commercial solvers with large-scale
capabilities are currently available. The main drawback of MIP is still its computational
complexity when applied to large-scale UC problems. However, powerful MILP
methods, such as the branch-and-cut algorithm with large-scale potentials, could lower
the computation burdens of MILP.

The UC problem is formulated as:

min;;(Fc’i(Pi’,%SUi’t +SD,-’,) (i)
s.t.

NG )
‘zl Py=Pp,+Pp,  [1=1,..NT] (ii)
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where 7 jt represents the region of feasible production of generating unit j in time

period t. The objective of the UC problem is to minimize the total operation cost, which
is defined as the sum of the production cost, the startup cost, and the shutdown cost (i).
The production cost often is expressed as a quadratic function of the power output, while
the startup cost is usually modeled as a nonlinear (exponential) function of the offline
time prior to the startup [Sha02]. Power balances in all periods are represented by the
block of constraints which could include electric power system losses (ii). The block of
constraints (iii) illustrates, in a compact way, the operating constraints, for every time
period, of every unit, e.g., generation limits, ramp rate limits, and minimum up and down

times. Binary variables are used to model on/off decisions.
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The nonlinear production cost function can be accurately approximated by a set of
piecewise linear blocks as shown in Fig. 1. Piecewise linearization is accommodated in
LP in which slopes assume different values over ranges of associated variables. Each
range of a given variable signifies an upper and lower limit within which the slope is

constant.

(a) | (®) |

Figure 2.1. Linearization (a) Nonlinear Curve, (b) Piecewise Linear Curve

23 Benders Decomposition

The optimization problem in hand is a large mixed-integer programming with
two-level hierarchical structure suited for BD applications. BD is widely used for
separating large-scale mixed-integer program (MIP), typically used in electric power
systems, into several easy-to-solve subproblems. Considering the size of real-world
security constraint-UC problems involving hundreds/thousands of generating units and
transmission lines, and multiple study hours, security constraint-UC is divided into two
problems, one integer program master (MIP) problem - UC - and LP network evaluation
sub-problems. The goal of the day ahead resource scheduling is to fulfill load while
maintaining transmission flows within their permissible limits at the minimum possible
cost. The energy day-ahead resource-scheduling model also includes the network
simulation, through dc power flow calculation, which considers the relevant network

constraints.
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Master problem solves UC and ED with all prevailing constraints. The lower
bound solution of the master problem may involve fewer constraints. The sub-problems
will examine the dc power flow according to the master problem’s UC solution in the
base case for minimizing transmission flow violations. If any violations arise, the
corresponding feasibility Benders cuts are continuously generated and fed back to the
master problem for the solution of the next iteration. Accordingly, a new lower bound
solution of the original problem will be achieved by re-calculating the master problem
with more constraints. The process continues until all violations are mitigated. The
iterative process between the master problem and sub-problem delivers a minimized cost
solution for generation scheduling while addressing transmission, voltage, and emission
constraints. The optimal solution of the original problem will be achieved when the
upper bound and the lower bound are adequately close; which will confine the final
solution to be close enough to the global optimal solution of the original problem
[Sha05].

Here master problem offers network constraint-UC a chance to improve the
original UC solution to satisfy all transmission network constraints (i.e., transmission
flows and bus voltages limits). Decomposition is the only feasible option for the solution
of the large-scale SCUC problem in real time. Fig. 2.2 illustrates the flowchart of the
discussed hourly security constraint-UC formulation.

If the solution to the master problem is infeasible, we have to curtail the load;
which is referred to as load shedding. The infeasibility of the master problem is out of the

scope of this dissertation.
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Figure 2.2. Operation and Control of Electric Power Systems

24 Monte Carlo Simulation (Scenario-Based Stochastic Simulation)

Scenarios are generated to showcase electric power system uncertainties through
the MCS employment. Uncertainties include random outages of generators and
transmission lines, and day-ahead forecast errors of hourly demand and wind speed. The
MCS parameters consist of forced outage rates of electric power system components and
probability distribution functions for load and wind speed forecast errors.

The load forecast error is denoted in (2.1) by a truncated normal distribution in

which the mean is the hourly power forecast and the standard deviation is 5% of the mean

[Bil96].
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0 x<pu—-3.50 or x>u+3.50

f(x)= (x=p)? .1
————1—-—.8 20° H—=3.50<x< u+3.50

Where (1 and o are the mean and standard deviation of the normal distribution

respectively.
u+3.50c 1 —(x-u)
And a= e % dx
H-350 2o

The wind speed forecast error is characterized by the auto- regressive moving
average (ARMA®) [Sod04], [Boo05]. As the time lag escalates, the autocorrelation factor
(ACF) and partial autocorrelation factor (PACF) of the wind speed time series declines
radically. Accordingly, the hourly wind speed forecast error is denoted by a lower order
ARMA (1.,1) as shown in (2.2).

The ARMA constants are attained by minimizing the root mean square error
(RMSE) between the simulated ARMA time series and the measured wind speed data
[Boo05]. For the purpose of this study, the ARMA constants are considered as a =0.98
and £=0.7 , and it is assumed that Z(¢) follows Gaussian distribution function with the
standard deviation of 10% of the wind speed projection.

The projected wind speed time series is obtained by employing the probability
transition matrix, which is either characterized by historical data or by probability
distribution parameters of wind speed time series [Man06]. The probability transition

matrix outlines probabilities of transiting from one wind speed category to others.

* In the statistical analysis of time series. autoregressive—moving-average (ARMA) models deliver a parsimonious description of a
(weakly) stationary stochastic process in terms of two polynomials, one for the auto-regression and the second for the moving average
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The wind speed is categorized into several ranges of wind speeds, which are
signified by the mean value at each category, in order to obtain the probability transition
matrix from historical data. Alternatively, the probability transition matrix is obtained
employing the Weibull distribution function and the autocorrelation factor; by composing
an initial probability vector, a weighting matrix, and a normalizing vector [Man06]. Once
the probability transition matrix is constructed, the wind speed time series is created
using the Markov chain method [Man06],[Man02].

XO=aXt-D+BZt-D+z(t) (22)

The diurnal pattern strength, which has a sinusoidal form, illustrates the daily
wind speed pattern. The peak value in this pattern specifies the ratio of the maximum
wind speed to the daily average wind speed [Man06],[Man02]. The diurnal pattern
strength is then applied to the wind speed time series. Lastly, the hourly wind power
generation is acquired using the power curve of wind turbines and the hourly wind speed.
Further, a low discrepancy method, Latin Hypercube Sampling (LHS), is developed to
generate evenly distributed random samples with a smaller variance in order to improve
the efficiency of the scenario-based stochastic simulation [Wu07],[ Wu08],[Gla03].

Additionally, scenario reduction techniques offer a goodness-of-fit adjustment
between the computation speed and the accuracy, by removing scenarios with very low
probabilities and aggregating scenarios that are very close in terms of statistical metrics

[Wu07].[Wu08],[Gla03],[Dup03],[Gam02].
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CHAPTER 3
DETERMINISTIC COORDINATION OF THERMAL GENERATING UNITS WITH
DISTRIBUTED BATTERY STORAGE TO ENHANCE THE SECURITY AND THE
ECONOMICS OF POWER GRID OPERATION CONSIDERING EMISSION
CONSTRAINTS

This chapter is organized into 4 sections as follows: section 3.1 formulates the
proposed deterministic SCUC model with penetration of aggregated EV fleets, as
distributed battery storage, considering emission reductions. Section 3.2 depicts the
effectiveness of the proposed approach by a case study on a 6-bus system. Challenges of
the proposed model are presented in section 3.3. Finally section 3.4 provides concluding

remarks on the effectiveness of the proposed formulation for a smarter, cleaner, socially

responsible and sustainable generation of electricity.

3.1 Thermal Units — Aggregated EV Fleets Coordination Methodology

The proposed SCUC is formulated as a MILP optimization model that optimizes
the coordination between conventional thermal units, with stationary EV fleets as
distributed battery storage facilities, while incorporating emission constraints. The
proposed model spearheads economic goals with substantial cutback on carbon-
footprints, focusing on day-ahead scheduling (short-term operation). The MILP problem
is solved using Generic Algebraic Modeling System (GAMS) software with a dc power
flow algorithm that considers network constraints utilizing CPLEX optimizer solver.

Number of EVs in a fleet and their energy requirements are considered as
variables in the proposed SCUC optimization problem. The physical characteristics and
operation constraints of thermal generating units are considered as input. The hourly UC

and dispatch of generating units and dis/charge states of EV fleets provide the optimal
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hourly solution.

The objective of SCUC (3.1) includes minimizing the daily operation cost in
which the projected quantities of loads and EV batteries are included, subject to
generating unit, system, and emission constraints. The objective function (1) consists of
the generation cost of thermal units, startup and shutdown costs of thermal units, and the
operation cost of EV fleets. F¢ is the production cost function, which is the generating

units input/output (I/O) curve. The production cost is typically expressed as a quadratic
function of the power output F_ ;(pj;)=a; +b.; pjy +ccipi21 where a, b, and ¢ are the cost

coefficients.

The second term denotes the startup cost (SU), which is a function of the length of

time that the unit has been off. The startup cost is given as
W A
SUj; = 1 l:l_]i(t——l)][:ai + (A —e™ 7 )]

where /7 is the integrated cost of startup and equipment maintenance, f, is the startup cost
of unit when initiating from cold conditions, X °ffi5 the number of hours that the unit has
been Off, and A; is the thermal time constant that characterizes the cooling speed of the
unit. Similarly, the shutdown cost (SD), which is formulated as SDj; = kP ; here k is the
incremental shutdown cost. The operation cost of EVs, C,, depends on the number of
vehicles and dis/charging depth and frequency [Khol2].

The system and generating unit constraints are presented in (2)-(20); the unit
generation capacity limits given in (3.2) indicate that once committed (I=1), the
generation unit must run between its min and max generating capacity. If I=0, the unit is

turned off.
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The min down/up time constraints are given in (3.3) and (3.4); (3.3) indicates that
a unit must be OFF for a certain period before it can be turned on again. By contrast,
(3.4) indicates that a unit must be ON for a certain period before it can be turned off
again. Equations (3.5) and (3.6) represent the operating ramp up/down limits. The
operating ramping up/down bounds limit the movement of a generating unit between
adjacent hours. Equation (3.5) denotes that when unit i is starting up at time t its
generating output (P;,) should be equal to the minimum generating output of unit (ppn).

Likewise, equation (3.6) implies when unit i is shutting down at time t, its generating

output [Pi(t—l)J should also be equal to the minimum generating output of unit (p,.»)

[Sha05].

The emission constraint (3.7) illustrates that the daily emission must be less than
or equal to a required limit. Numerous substances act as GHG when emitted into the air.
The primary concern, due to the volume of its emissions in energy production, is carbon
dioxide (CO;) and carbon dioxide equivalent (COa¢). The emission function is considered

as a convex function of power generation which is modeled as

Fei(Pit):aei +bel-pl-t+cel-pl?t in which a, , b, . ¢, are emission coefficients”. The

above nonlinear emission function is piecewise linearized and incorporated into the

proposed MILP formulation. The startup and shutdown emission is represented by

ET ET
SUe,it & SDe,it .

Equation (3.8)-(3.9) corresponds to the system load balance and dc power flow

constraints, respectively. Power flow for each transmission line is represented by (3.9)

° For each thermal units, heat curve (MBTU/MW) and (MBTU/Metric Tons of emissions) are
considered; their interactions is computed as emission cure (MW/metric tons).
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which is dependent on the voltage angle difference between adjacent buses and the line
impendence. Transmission flow limits are represented by (3.10).

The EV fleet constraints are given in (3.11)-(3.18). The net hourly
absorbed/injected energy and the dispatched power of EV fleet is given in (3.11) which
illustrates that the difference between the energy stored in the aggregated EV battery and
the EV energy injected back to the grid is measured by the charging cycle efficiency of
the aggregated EV. The hourly charge/discharge/idle modes of EV fleets which are
mutually exclusive are given by (3.12). Once an EV fleet is connected to the electric
power system (N, ,=1), the aggregated battery will be charged, discharged, or stay in the
idle mode. Equations (3.13)-(3.14) represent charge/discharge power constraints. The
hourly energy balance is given in (3.15). Equations (3.16)-(3.17) show the energy
capacity limit of each aggregated unit. Equation (3.18) represents the piecewise linear
function of convex charge/discharge cost curve of EV batteries which indicates the
operation cost of aggregated EVs has a direct correlation with the depth of
charging/discharging batteries; a higher depth in battery charging/ discharging causes the
number of cycles to failure decrease which in turn corresponds to an increase in the cost
of EV charging/discharging [Tom07]. In the proposed MILP formulation, the nonlinear
battery dis/charging cost curves are piecewise linearized. A tighter piecewise linear
estimation is presented in [Wull]. Equation (3.19) illustrates the assumption that the
aggregated state of charge (SOC) of batteries is set to be fixed at specific operation
periods [KhO12]; It is anticipated that the SOC is at 100% when a PEV fleet is leaving

the station.
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4
Evy=E,, +E\’Z§ (3.15)
EPin < g, < EaX (3.16)
Ev,O :Ev,NT 3.17)

Cv,t = Nv,t-{%bm,v-Pm,v,t}
0< Py s <P (3.18)

N v I Ev,t - EV’[—-] ’ = %Pm,v,t

_ rmax
E,1=Ey (3.19)

Fig. 2.2 illustrates the flowchart of the discussed hourly security constraint-UC

formulation.

3.2 Numerical Results
In this section, the impact of introducing stationary EVs as distributed battery
storage on power grid operations is examined. Following 3 cases are investigated:
Case 1: Hourly SCUC solution without emission constraints
Case 2: Hourly SCUC solution with emission constraints
Case 3: Hourly SCUC solution with emission constraints and stationary EV
fleets.
3.2.1 6-Bus System. The 6-bus electric power system, depicted in Figure 3.1, is

analyzed to illustrate the effectiveness of the proposed formulation.



G2

L3

G3

®

Figure 3.1. 6-Bus Electric power system
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The 6-Bus system has three thermal units, and five transmission lines; G1 is the

cheapest generating unit with the highest level of emission. The characteristics of

generating units, transmission lines, and the forecasted hourly load for 24h are illustrated

in Tables 3.1 and 3.2 and Figure 3.2, respectively. Table 3.3 represents the emission

function coefficients.

Table 3.1. Thermal Unit Characteristics

. a b c Puin Pinax SuU SD Min. Min
Unit

($MW?) ($/MW)  ($/h) (MW) MW) &) ($) Up(h) Dn.(h)
Gl 0.099 6.589 2114 100 320 100 50 4 3
G2 0.203 7.629 2174 10 160 200 40 3 2
G3 0.494 10.07 102.8 10 100 80 10 1 1

Table 3.2. Transmission lL.ine Characteristics
Line ID From Bus To Bus Impedance (p.u) Capacity (MW)

1 1 2 0.17 35.6

2 1 4 0.258 35.6

3 2 4 0.197 78.54

4 5 6 0.14 110.36

5 3 6 0.018 69.42

6 2 3 0.037 26.70

7 4 5 0.037 16.02
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Figure 3.2. Hourly Load

Table 3.3. Emission Function Coefficients

Unit a b ¢
($/1b%) ($/1b) ($/h)
Gl 0.000304 19.943 0.0
G2 0.000312 18.933 0.0
G3 0.000351 10.032 0.0
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3.2.2 Case 1: Hourly SCUC without emission constraint. In this case there are 3

thermal units G1, G2, G3. The hourly UC schedule is depicted in Table 3.4 in which 1

and 0 signify the hourly ON/OFF states of generating units, and hour 0 represents the

initial condition. The daily operating cost is $84,743 in which unit G3 is committed

mainly at peak hours in order to minimize the operation cost, while the cheaper, more

pollutant units Gl and G2 are committed longer. Figure 3.3 illustrates the hourly

generation dispatch in which G1 and G2 would supply most of the hourly load.

Table 3.4. UC Solution — Case 1

Daily Cost = $84,743.210

Unit Hour (1-24)

Gr 11 1 1t vt 1 111 1t 1t 1 1

G2 11 1 11t 1t 1 111 1 1 1 1
G3 00 0 00 O O OO1 1 1 1 1
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Figure 3.3. Hourly Generation Dispatch - Case 1

Figure 3.4 sketches the hourly emission trend as a function of hourly dispatch.

The aggregate daily emission for the two coal units and one gas unit is 64,303.445 metric

tons.
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Figure 3.4. Hourly Emission Trend of Thermal Units - Case 1

Hourly SCUC solution with emission constraints. In this case, a daily

3.2.3 Case2

emission cap of 60,100 metric tons is imposed on Case 1. In Table 3.5, G3, which is the

most expensive and least pollutant unit, is committed longer to satisfy the emission

constraint while G2 is committed for a shorter period. In this case, the operation cost is

increased by 12.62% to $95.435.
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Table 3.5. UC Solution — Case 2

Daily Cost = $95,435.471

Hour (1-24)

Unit

G1

11

I

00 0 00 0 0 00O

G2

G3

Figure 3.5 shows that G2 is mainly dispatched at peak hours while G1 carry less
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Figure 3.5. Hourly Generation Dispatch - Case 2

In Figure 3.6, the emission level of G2 is reduced considerably in order to address

the emission constraint.
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3.2.4 Case 3: Hourly SCUC solution with emission constraints and stationary EV
fleets. For the purpose of this study, EVs in multiple geographical locations are sorted
into fleets and considered as virtual stationary power plants. EV fleet characteristics
including max/min capacities, SOC, and max/min charging/discharging capacities are
aggregated characteristics of the available energy, max/min capacity and
charge/discharge power, of individual vehicles. Table 3.6 presents the characteristics of
the existing five EV fleets consisting of 3,400, 2000, 1,000, 1,600, 2,000 vehicles
respectively. The charging efficiency of a fleet, i.e., ratio of energy stored in the battery

to energy drawn from the power grid, is 85%.

Table 3.6. Electric Vehicle Fleet Features

EV  Min Max Min Max a b ¢

Fleet Cap. Cap. Charge/Discharge Charge/Discharge (MW (3/MW)  ($/

No. (MWh) (MWh) (kW) (kW) h)
1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0

Table 3.7 depicts the hourly commitment schedule. Once we introduce the 5 EV
fleets, the daily operation cost is reduced by 3% to $92,644.492.

Table 3.7. UC Solution — Case 3

Daily Cost = $92,644.492

Unit Hour (1-24)
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Figure 3.7 shows the hourly generation dispatch of generating units in which Glis
committed at its minimum capacity of 100 MW, G2 is committed at peak hours, and G3
is dispatched less compared to the previous case. The total daily operation cost is lower at
peak hours, when the electricity price is high and EV fleets inject power back to the grid.
The daily emission trend is plotted in Figure 3.8 in which G1 emits constant hburly
emission, G2 emits at pick hours, and G3 emits less amount of pollution compare to the

previous case.
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Figure 3.7. Hourly generation dispatch - case 3
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Figure 3.8. Hourly Emission trend of Thermal Units - case 3

Figure 3.9 captures the aggregated dis/charge of EV fleets in which V2G

facilitates a cheaper energy delivery at peak hours. Negative numbers indicate EV
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charging at off-peak hours, while positive numbers denote discharges at peak hours. At
hours 12, 16, and 22, when the bus locational marginal price (LMP) is higher, fleets are
injecting power back to the grid. That is, V2G implementation reinforces the hourly
dispatch at peak hours. As the results indicate the V2G technology holds out the promise

of higher energy efficiency with a greener footprint.
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Figure 3.9. Hourly Aggregated Dispatch of Fleets 3&4 with Bus #5 LMP

3.3 Potential Challenges

Several challenges need to be addressed for an effective and viable integration of
V2G into the electricity grid. The proposed model would require a large network of EVs
to be connected to the smart grid and synchronized properly to smooth out peaks and
valleys in a utility’s power operation. On the technical side, intelligent charging strategies
are needed for a large-scale integration of EVs to coordinate their energy demand with
the production of renewable energy and the distribution grid. In addition, the current
batteries are not specifically designed and optimized for V2G infrastructure. Also the

battery life cycle would need to be improved to support a greater number of
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charge/discharge cycles. Moreover, the business case for investment in a charging station
infrastructure is still an issue with questions over the required level of investment, market
response to infrastructure investments, and where the investment should come from to
make zero-emissions transport a market reality. Since smooth integrations of V2G into
power grids are critical to energy independence, these issues would need to be addressed
urgently. The V2G technology has the potential to reduce the dependence on foreign oil,
reduce greenhouse gas emissions, and save large sums of money for utility and

transportation industries.

3.4 Conclusions

The proposed scheduling algorithm offers a potential model to address the need
for a sustainable and long-term solution to power generation in which economic and
environmental factors are balanced. This paper proposed a methodology for day-ahead
energy resource scheduling and the coordination between distributed battery storage, and
thermal generating units considering intensive use of EV fleets and V2G. The
contributions of this paper include an efficient methodology for day-ahead energy
resource scheduling, which investigates the effect of distributed battery storage, in
particular stationary EV fleets, on the hourly generation schedule of thermal units with
emission constraints. The proposed model is very generic which can be easily expanded
to large-scale systems with additional constraints representing a proper degree of details
corresponding to real world cases.

The model has been tested on a 6-bus system, and numerical simulation proves
that the proposed model has the potential to considerably improve the efficiency of the

electricity generation and utilization, and shrink the grid operation cost while addressing
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environmental concerns. Our results indicate that V2G implementation could guarantee
the optimal supply of electricity with a positive environmental impact.
The following chapters will integrate renewable sources as well as the mobility of

EVs to the existing model.
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CHAPTER 4
DETERMINISTIC COORDINATION OF THERMAL GENERATING UNITS,
VARIABLE RENEWABLE SOURCES, AND AGGREGATED EV FLEETS FOR
SUSTAINABLE OPERATION OF POWER GRID SYSTEMS
This content of chapter is outlined as follows. Section 4.1 discusses the proposed
Thermal Units — Wind - Aggregated EV Fleets Coordination Methodology. Section 4.2

investigates the effectiveness of the proposed approach utilizing a 6-bus system.

Conclusions are drawn in section 4.3.

4.1  Thermal Units — Wind - Aggregated EV Fleets Coordination Methodology

The proposed day-ahead scheduling problem synchronizes variable energy
sources, mainly wind, with stationary fleets of EVs, as distributed storage facilities, while
incorporating emission constraints to demonstrate how their integration to the electric
power system can effectively satisfy electric power system network requirements while
achieving economic goals with substantial cutback on carbon-footprints, with the focus
on day-ahead scheduling (short-term operation). Further the discussed model optimizing
the hourly coordination of wind-EV fleets’ power generation with the thermal unit
dispatch. The problem is implemented with Generic Algebraic Modeling System
(GAMS) software with a dc power flow algorithm that considers network constraints
utilizing CPLEX optimizer solver.

In order to determine the wind energy potential of a given site and to approximate
the energy output from a wind turbine installed there, statistical analysis can be used. If
time series measured data are obtainable at the desired location and height. There may be
no need for a data analysis in terms of probability distributions and statistical techniques.

In contrast, if prediction of measured data from one location to another is needed, or
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when only summary data are available. then there are distinct benefits to the use of
analytical representations for the probability distribution of wind speed.

Two probability distributions are generally used in wind data analysis: (1) the
Rayleigh and (2) the Weibull. The Rayleigh distribution employs one parameter: the
mean wind speed. The Weibull distribution is based on two parameters: k, a shape factor,

and c, a scale factor (both parameters are functions of Jand ;) and can better represent

a broader variety of wind regimes. The Weibull probability density function and the

cumulative distribution function are given by [Man09] :

ror-{2)(2) el (2f

k
F(U)=1-exp -—(f’-)
C

k-1

4.1.1 Assumptions. In the discussed deterministic optimization model, the wind energy
and load forecast errors, number of EVs in a fleet and their energy requirements are
considered as variables. The physical characteristics and operation constraints of all
generating units are also considered as input. Wind speed variations are simulated by the
Weibull distribution function, auto correlation factor and diurnal pattern; wind generation
is attained using the power curve of wind turbines and the hourly wind speed as discussed
by Manwell, et al. [Man09]. The optimal solution incorporates the hourly UC, dispatch,
and emission of generating units, and charge/discharge states of stationary EV fleets for a

day.
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4.1.2 Deterministic SCUC. We formulate the coordination between wind, stationary
EV fleets, and thermal units as an MILP problem in SCUC as follows. The objective
(4.1) is to minimize the base case operation cost, in which the projected quantities of
load, and EV batteries are included, which is subject to system and generating unit
constraints. The objective function (1) consists of the generation cost of thermal units,
startup and shutdown costs of thermal units, and the operation cost of EV fleets. Since
wind farms usually have trivial operation costs, no cost, related to the operation of wind
power generation unit is considered in the objective function. The system and generating

unit constraints are demonstrated in (4.2)-(4.21).
min %Z(Fc,i (Bg )+ SU+SDy )+ ¥3Cy (4.1)
i

where F¢ is the production cost function expressed as a quadratic function of the power
dispatch,

— 2
Fe i(Pi) =@ +bcipir +<ciPy
where a, b, and ¢ are the cost coefficients. The nonlinear production cost function can be
approximated by a set of piecewise linear blocks as shown in Figure 4.1 piecewise

linearization is accommodated in the LP which would cause the cost or sensitivity to

assume different values over different ranges of the associated variable.

A A

(a) (b)
- — >

Figure 4.1. Piecewise Linearization (a) Nonlinear Curve, (b) Linear Curve

The second term in (4.1) denotes the startup cost (SU), which is a function of the
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length of time that the thermal unit has been off. The startup cost is given as:

SUitzlit[l_]i(twl):I a; + fi(l—e )

where «a is the integrated cost of for startup and equipment maintenance, g is the
startup cost of unit when initiating from cold conditions, X °"is the number of hours that
the unit has been Off, and A, is the thermal time constant that characterizes the cooling
speed of the unit. Similarly, the shutdown cost (SD), which is formulated as SD;;, = kP,
here k is the incremental shutdown cost. The operation cost of EVs, C,, depends on the
number of vehicles and charging/discharging depth and frequency [Kho12]

The wind curtailment happens when there is an inadequate ramping down
capability of thermal units or major transmission congestion for utilizing the available
wind power in electric power systems. The wind curtailment constraint is given in (4.2)

in which the sum of dispatched and curtailed wind power is the same as the wind power

forecast.

PWJ + Pd,w,t = Pf,w,t (4-2)

The thermal unit generation range (4.3) implies that once committed (/=1), the
generation unit must operate between its min and max generating capacity. If /=0, the
unit is de-committed.

P.

l,minIi,t < Pi,t <F

i,maX]i,t Vi, Vi (4.3)

Equation (4.4) denotes min off time indicating that a unit must be off for a certain
period before it can be turned on again. Equation (4.5) denotes that a unit must be on for

a certain period before it can be turned off, representing min on time constraint.
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[X?{Z_l)—T?fq*[m-11(1—1)]20 ViVt (4.4)

System ramp up/down limits between adjacent hours are demonstrated by (4.6)-
(4.7). Equation (4.6) conveys that when unit i starts up at time 7, its generating output
(P;) is equal to the minimum generating capacity of unit (p,»), while (4.7) conveys
when unit i‘ is shutting down at time ¢, its generating output (P;(;_)) is equal to the

minimum generating capacity of unit (pn,») [Sha05].

Py —1),‘(;_1)5[I—Iit(l"li([_l)}URi +1; (l_ji(t—l)JPi,min Vi, vt (4.6)

PI.( 1) -P 5{1—11.( t_l)(l—ll-,)JDR,- +1i( t_l)(l—lit)}’i’min Vi, vt (4.7)
Equation (4.8) indicates that the daily emission is capped. For the purpose of this

study, the primary concerns are carbon dioxide CO2 and carbon dioxide equivalent COZ.

The emission function, as a convex quadratic function of power generation, is modeled
10, Ny . h. 2
as’: Fg; (pzt ) =ag; +byiPjy +CeoiPjy

.. . 11 ..
where a,,. b,;, c,;represent emission coefficients’ of unit i.

er s

24
2 ,ZI[F Elpyy+sUL +SDEY } <EmsEL . Vi ET= {C02 &coez} 4.8)
] [= ? s o .

Emission constraints are coupling constraints over a group of generating units and

period of study. The startup/shutdown emissions denoted by SU, and SD. The nonlinear

""Emission functions are computed using historical generator data. For each thermal units, heat curve
(MBTU/MW) and (MBTU/Metric Tons of emissions) are considered; their interactions is computed as
emission curve (MW/metric tons); the curves are piecewise linearized. Slope of segments indicate the
incremental emission for each unit.
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emission function is piecewise linearized and incorporated into the proposed MILP
formulation.

The system power balance and dc power flow constraints are expressed by (4.9)-
(4.11), respectively. The power flow equation (4.10) indicates that the flow on
transmission line is dependent on the voltage angle difference between the corresponding

buses and the line impendence. The power flow is limited by (4.11).

d .
2P Y P+ Py = Y PR+ > PL,- ¥ PL Vi, vt 4.9
i ST w deDb Dyt IELf,b Lt IELt,b Lt

g;,-6

PL; = ARG line | is from bus j to bus o (4.10)
1t on
max

\PLl,tlspL[ “4.11)

The EV fleet constraints are expressed by (4.12)-(4.19) where (4.12) conveys the
net hourly absorbed/injected energy and the dispatched power of EV fleet; showing that
the difference between the energy stored in the aggregated EV battery and the EV energy
injected back to the grid is measured by the charging cycle efficiency of the aggregated

EV.

1/
Nl =iy Py =Py (4.12)
hy=feys—F, dev,t

Once an EV fleet is connected to the electric power system (N,.=1), the

aggregated battery will be charged, discharged, or remain in the idle mode (4.13).
]dc,v,t +[C,V,l‘ +]i,v,t = Nv,t (4.13)

Charging and discharging constraints for preserving the battery life are given in

(4.14)-(4.15).
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Ie g PRD <P, <1y, PIRX (4.14)

max
]dc,vl dcv Pdcvr“]dcvlpdcv (4.15)

Energy balance per hour is ensured by (4.16).
Epg=E, y+ES (4.16)

Energy range of each aggregated unit is addressed in (4.17)-(4.18); showing the

capacity limit in each fleet.
EPIn<E, | < EaX (4.17)
EV,O = EV,NT (4 1 8)

Piecewise linear function of convex charge/discharge cost curve of EV batteries is
expressed by (4.19); implying that the operation cost of aggregated batteries has a direct
correlation with the depth of charging/discharging batteries. A higher depth in battery
charging/discharging causes the number of cycles to failure dramatically decrease which
corresponds to an increase in the cost of EV charging/discharging [Tom07]. The
nonlinear battery charging/discharging cost curves which are convex quadratic functions
are piecewise linearized in the discussed MILP formulation. A tighter piecewise linear

estimation is presented in [Kho12].

Cv,t = Nv,t-(:zbm,wpm,v,t }
0L Ppyvy S Py (4.19)

Nv,t ~lEv,t - Ev,z_] I =%Pm,v,t

The assumption that the aggregated state of charge (SOC) of batteries is set to be

fixed at specific operation periods is addressed by (4.20).
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E,, p = EaX (4.20)

4.2

Figure 2.2 illustrates the flowchart of the proposed hourly SCUC formulation.

Numerical Results

In this section, a 6-bus electric power system, shown in Figure 4.2, is utilized to

demonstrate the effectiveness of the proposed day-ahead solution. The example examines

the effect of generating unit coordination strategies on electric power system generation

scheduling. Further, it investigates the coordination of wind-EV fleets at bus-level and

system-level on the hourly commitment and dispatch of coal and natural gas units.

Furthermore, total operation cost, total emission, and expected wind energy curtailment

are evaluated in this case study. The following 3 cases are examined:

Case 1: SCUC with three coal units and one wind turbine, considering
environmental externalities

Case 2: SCUC with two coal units, one natural gas unit, and one wind turbine,
considering environmental externalities

Case 3: Integration of stationary EV fleets and wind generation effect on the

hourly SCUC solution considering environmental externalities.

4.2.1 6-Bus System. The 6-bus system incorporates Gl, G2, either G3-Coal or
(G3-Gas (depending on the case study), and a wind turbine. G1-G3 units are least
to most expensive units, with most to least pollution levels, respectively.

Furthermore, the system includes 7 transmission lines.
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Figure 4.2. 6-Bus Electric power system
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The parameters of generating units, transmission lines, and hourly load forecasts

for 24 hours are depicted in Tables 4.1 and 4.2 and Figure 4.3, respectively. Table 4.3

shows the emission function coefficients.

Table 4.1. Thermal Unit Characteristics

Unit a b c Pooin Piax SuU SD Min. Min

($/MW?) ($/MW)  ($/h) MW) (MW) % (%) Up(h) Dn.(h)
Gl 0.099 6.589 2114 100 320 100 50 4 3
G2 0.203 7.629 2174 10 160 200 40 2
G3°© 0.089 6.58 2104 10 220 10 80 1 1
G3© 0.494 10.07 102.8 10 100 80 10 1 1

Table 4.2. Transmission Line Characteristics
Line ID From Bus To Bus Impedance (p.u) Capacity (MW)

1 ) 2 0.17 35.6

2 1 4 0.258 35.6

3 2 4 0.197 78.54

4 5 6 0.14 110.36

5 3 6 0.018 69.42

6 2 3 0.037 26.70

7 4 5 0.037 16.02
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Figure 4.3. Total Hourly Load

Table 4.3. Emission Function Coefficients

Unit a b ¢
($/1b%) ($/1b) ($/h)
Gl 0.000304 19.943 0.0
G2 0.000312 18.933 0.0
G3¢ 0.000300 17.934 0.0
G3© 0.000351 10.032 0.0
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4.2.2 Case 1: SCUC with three coal units and one wind turbine, considering

environmental externalities. In this case the coordination between 3 coal units (G1, G2,

G3%), and one variable renewable source (wind) is evaluated. The wind turbine is

assumed to have zero operation cost. Table 4.4 illustrates the hourly UC in which diurnal

emission cap of 86,300 pounds is imposed."? G1 and G2 are committed for 24 hours

while G3¢ which is the most expensive coal unit is commits for 21 hours to address the

cost minimization objective.

2 Daily emissions are computed using historical generator data. Daily emission cap is also imposed based on the

historical data. (Ellerman. et al.

.2001) [3]
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Table 4.4. UC Solution — Case 1

Daily Cost = $114,596.419

Unit Hour (1-24)

The daily operation cost is $ 114,596.419 and the wind curtailment is 177.373
MW/h. This is the case in which wind curtailment is high due to insufficient ramping
down capability of coal units. Figure 4.4 depicts the diurnal generation dispatch of
thermal units in which the standard deviations of generation dispatch for G1, G2, and

G3€ are 24.91, 13.78, and 10.62 MW, respectively.

200 . *CI
o -aQG2
P
T 100 -
)
2
& 50 -
M
0 T R S S H 7 T : T : T X Wy 1 T X i ; i 1
0123456 78 9101112131415161718 192021222324

Time (Hour)

Figure 4.4 Thermal Generation Dispatch of Units - Case 1

Hourly emission of each unit is represented in Figure 4.5 in which Gl emits the most
followed by G2, and G3°, respectively. The cumulative daily emission is capped at

86,300 pounds.
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Figure 4.5. Hourly Emission Trend of Thermal Units - Case |

423 Case 2: SCUC with two coal units, one natural gas unit, and one wind
turbine, considering environmental externalities. In this case we replace G3© with a
more expensive, less pollutant, peaking natural gas G3© unit. Natural gas capability to
regulate power generation within minutes offers a significant potential for the integration
with variable energy sources and serving as a reliable peak load supplier. Industry leaders
concur that coal to natural gas switching is becoming the standard which will extensively
transform the U.S. energy landscape. Natural gas is projected to account for 82% of new
capacity while coal plants are anticipated to be just 10% of total new capacity in the U.S.
by 2014 [Heall].

The daily operation cost of the system rises by 2.25% to $117,180.059 while
cumulative diurnal emission and wind curtailment is ameliorated to 85,422.239 pounds
and 138.696 MW/h respectively. This result implies that the natural gas unit reduces the
emission level and follows the wind turbine closely, due to its ramping capability, with a
lower wind curtailment in the scheduling horizon. Table 4.5 demonstrates that G2 and

G3 are committed less which is due their ramping flexibility.



59

Table 4.5. UC Solution — Case 2

Daily Cost = $117,180.059

Unit Hour (1-24)

Figure 4.6 shows that the standard deviations for the dispatch of G1, G2, and G3°
are reduced to 23.35, 13.68, and 9.6 MW, respectively which indicate a smoother
generation profile as compared to that in Case 1. Hence, the replacement of a coal unit
with a natural gas unit can alleviate the generation dispatch volatility when integrating
renewable energy resources into the grid. Also, G3-G is committed only when the wind

turbine generation is low.

. ®0l
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Figure 4.6. Hourly generation dispatch - case 2

Figure 4.7 illustrates the hourly emission trend of the thermal units in which the
minute G3% emission indicates that G3 is a clean source which reduces the wind energy

curtailment.



60

5000 - N
4500 - = G3 - -
2 4000 - G2 -

] - -
£ 3500 - NGl L \ )
33000 - m - - Y f P RN N & 8N N
o c N N NN XN YYX NSNS N
52300 7= S N\ "~ -§§§§§§§§§§§§§§§§
8 ' 8 s N . NN NN NERNIRNEN
22000 NEININEIRN YN Y NN N YNDNDNNNNINNINNIRXND
2 INRNRNERNNERNENENRNRNNRNERNERNENRNNENERNRNRNRNERENR
AT N IENENEINENERNERNENENENERNRNERNERNERNENERNNENERNNENENRNRN
£ NENERNRNERNRNERNRNERNRNERNENRNERNERNRNENNENRNERNERNRNRN
S L INENEINEININERNINRNNRNENNERNRNERNENERNERNRNRNERNENRNRN

NEININENINRNERNRNENRNERNERNNNENERNENNERNERNERNERNERNRN
0 - T YDFNDDXNYNTINIDNININININNININNNINNYINN
2 4 6 9 20 21 24

9
Y]
(O8]

1121314151
Time (Hour)

oy
W
wh
~
«©
—
<o
—
SN
—
~J
[
[« ]
—
o

Figure 4.7. Hourly Emission Trend of Thermal Units - Case 2

4.2.4 Case 3: Integration of stationary EV fleets and wind generation impact on
the hourly SCUC solution considering environmental externalities. In order to further
improve the operation cost, reduce the emission level, and facilitate higher penetration of
variable renewable energy resources, we introduce 5 stationary EV fleets, with
distributed storage that is always connected to a bus. EV fleet characteristics include
max/min capacities, SOC, and charge/discharge capacities of aggregated vehicles. Table
4.6 denotes the characteristics of the five EV fleets consisting of 3,400, 2000, 1,000,
1,600, and 2,000 vehicles, respectively. The charging efficiency of a fleet, i.c., ratio of
energy stored in the battery to energy drawn from the power grid, is assumed 85%. The
introduction of V2G into the electric power system would reduce the daily operation cost
by 4.3% to $112.360.05, abates the daily emission by 4.45% to 81,779.459 pounds, and

cut down any wind curtailments to zero.
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Table 4.6. Electric Vehicle Fleet Features

EV  Min  Max Min Max a b

Fleet Cap. Cap. Charge/Discharge Charge/Discharge (/MW7) (/MW)  (&/

No. (MWh)  (MWh) kW) (kW) h)
1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0

Table 4.7 illustrates the hourly UC of generators in which the hourly commitment
of G2 is increased by three hours. Figure 4.8 depicts the hourly generation dispatch in
which the standard deviations are reduced to 20.43, 3.4, and 8.55 MW for G1, G2, G3-G
respectively, indicating a flatter profile. As such, V2G can further moderate the volatility
of thermal unit dispatch when integrating renewable energy resources.

Table 4.7. UC Solution — Case 3

Daily Cost = $112,360.048

Unit Hour (1-24)

Power (MW)
S W

s S
3

)

W

N S S S
01 234567 8 9101112131415161718192021 222324
Time (Hour)

Figure 4.8. Hourly generation dispatch - case 3
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Figure 4.9 illustrates the stacked diurnal emission dispatch of generators with
sharp aggregated daily declines as compared to previous cases due to a wider usage of

wind energy and the EV storage, at peak hours.
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Figure 4.9. Hourly Emission Trend of Thermal Units — case 3

Figure 4.10 shows the aggregated charge/discharge of EV fleets in which the V2G
facilitates a cheaper energy delivery at peak hours. Negative numbers indicate that the
EVs are charged at off-peak hours, while positive numbers denote period when EVs are
discharged at peak hours. At hour 12, when the bus locational marginal price (LMP) is

higher, the first fleet discharge for injecting power to the grid.

Further, Figure 4.10 illustrates the diurnal pattern of LMP variation at bus #5; in
which LMPs are lower at off-peak hours, and start rising from hour 12 to 22, during peak
hours. It also demonstrates hourly aggregated charge/discharge pattern of fleets #3 and
#4, which both are located on bus #5. Indicating EV fleets are either idle or charging
during off-peak hours, and at hour 12 in which LMP rises from 30.35$/MWh to
36.3583/MWh, fleets are providing power back to the system; helping to alleviate the load

during hours 12 to 22/peak hours.
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Figure 4.10. Hourly Aggregated Power Dispatch of Fleets 3&4 with BUS #5 LMP’s
Oscillation

The aggregated hourly load dispatch with and without the V2G deployment,
considering no congestion, is sketched in Figure 4.11. Here, at off-peak hours, in which
LMPs'? are lower the EV fleets are either charged or in the idle mode as such demand is
higher. At hour 12 when the LMP increases from 185.35 $/MWh to 191.93 $/MWh at
peak-hours, EV fleets would supply power back to the system which would lower the
aggregated demand. This case implies that providing a distributed storage through V2G
could accommodate the variability of renewable energy resources for supplying the

hourly demand.

" LMP stands for Locational Marginal Price: which expresses the hourly price at each bus.
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Figure 4.11. Hourly Aggregated Load with and without storage (No Congestion)

Table 4.8 Summrizes the conclusions from the above mentioned case studies.

Table 4.8. Summary — Cases 1,2,3

. Wind Standard Deviation of
Da'l)f Daily Emission Curtailment Dispatch (Mw)
Case # Operation (Pounds)
Cost ($) Mwh
G1 G2 G3
1 114,596.419 86,300 177.373 2491 13.78 10.62
2 $117,180.059 85,422 138.696  23.35 13.68 9.6
(2.25% AN)
3 $112,360.05 81,779 0.0 2043 3.4 8.55
(4.3%\) (4.45%¥)

4.2 Conclusion

This chapter proposed a methodology for the day-ahead scheduling in electric

power systems with coordinated wind, distributed storage, and thermal units. The study

in this dissertation examines a sustainable model that has the potential to accelerate the

clean and variable energy deployment in large electric power systems. We spearheaded

the push to advance electric power system operation and control with accessibility,

affordability, and reliability to alleviate environmental externalities. Decoupling
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electricity and transportation industries, which represent main sources of greenhouse gas
emission, from their reliance on oil would enable positive changes for global prosperity.
The decoupling would also provide foreseeable and sustainable energy, improve the
quality of life, and reduce climate-relevant emissions. Our simulation results back the
following conclusions:

First, natural gas is a fundamental partner to the expansion of utility-scale
renewables, providing cleaner, reliable backup power when the sun is dimming or the
wind dies down. Natural gas is considered as a bridge fuel between coal and variable
sources not only because it causes less pollution per unit of electric power generated as
compared with coal, but also due to its potential to regulate power generation within
minutes which enables superior integration with renewable sources and serves as a
reliable supply for meeting peak demands.

Second, the salient feature of the proposed approach is the deployment of EV-
fleets as distributed storage and their optimal coordination with wind energy. V2G
implementation is an especially promising method for ensuring that the renewable energy
supply would match the hourly demand, smoothening out the variability of resources, and
providing a long-term, decentralized form of electricity storage in a electric power
system. Although distributed storage systems are much smaller than conventional energy
sources for providing base firm capacity, they demonstrate advantageous technical and
economical features when providing short-term power.

Numerical studies indicate that the integration of EV fleets as stationary
distributed storage facilities could cut the diurnal operation cost, abate the emission, and

enable thorough consumption of forecasted wind with zero wind curtailment. Our
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analyses points out that V2G technologies have the potential to make a paradigm shift in
a number of fundamental ways including: diminishing the installation of conventional
peak generation capacity, encouraging the installation of renewable electricity sources,
and accelerating the adaptation of new transport technologies.

The implementation of such models worldwide could reduce the global warming,
eliminate energy insecurity, and pave the road towards a greener growth. This plan may
serve as a template for more ambitious goals. An expansion of the proposed model in a
larger scope with stochastic scenarios would demonstrate a lower emission when

conventional vehicles are replaced gradually with EV fleets.
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CHAPTER 5
V2G FOR SUSTAINABLE DEVELOPMENT IN AN UNCERTAIN ENVIRONMENT
— STOCHASTIC COORDINATION OF THERMAL UNITS, RENEWABLE ENERGY
SOURCES, AND STATIONARY EV FLEETS
The content of this chapter is structured as follows. The proposed stochastic
SCUC optimization model, in its initial (non-robust) and stochastic (robust) formulations,
is described in Section 5.1. The results of the effectiveness of the proposed model are
presented and discussed, utilizing a 6-bus system, in Section 5.2. Finally, Section 5.3

sums up the core results and conclusions of the study, and offers some hints about

potential future developments.

5.1 Proposed Stochastic SCUC Optimization Model

The proposed stochastic day-ahead scheduling problem harmonizes variable
energy sources, mainly wind, with stationary fleets of EVs, as distributed storage
facilities, in an uncertain environment. Further, it incorporates emission constraints to
exhibit how the renewable energy integration to the electric power system can effectively
satisfy electric power system network requirements while achieving economic goals with
substantial cutback on carbon-footprints, with a focus on short-term operation. Further
the discussed model, optimizing the hourly coordination of wind-EV fleet generation
with the thermal unit dispatch. The problem is implemented with Generic Algebraic
Modeling System (GAMS) software with a dc power flow algorithm that considers
network constraints utilizing CPLEX optimizer solver.

The synchronization between wind, stationary EV fleets, and conventional
thermal units is formulated as a MILP problem in stochastic SCUC. The objective (1) is

to minimize the operation cost, in which the projected quantities of load, wind, and EV
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batteries are included, subject to system and generating unit constraints. The objective
function (5.1) consists of the base case operation cost, including generation cost of
thermal units, startup and shutdown costs of thermal units, and the operation cost of EV
fleets; in which outages of generators and transmission lines are not included. Further, the
availability costs for facilitating spinning reserve in MCS scenarios are taken into
consideration in the objective function.

The payment to the generators that facilitate spinning reserve refers to as the
availability cost. One third of the marginal cost of a generating unit is considered as
availability cost [Gan03]. In response to the existence of uncertainties, the provision of
reserve is exercised as a remedial action by generators. Generators capability to provide
remedial actions are bounded by their ramp up/down limitations. The objective function
also considers the expected cost of remedial actions in scenarios for accommodating
uncertainties. Thermal units are assumed to be non-quick start units; as such their
scenario commitment status is the same as that in the base case. So no extra
startup/shutdown costs are introduced in scenarios.

Moreover, since wind farms usually have trivial operation costs, we consider a no
cost operation for wind energy units in the objective function. The system and generating

unit constraints in the base case are demonstrated in (2)-(21).

S5 (PP Fei (Ps)+SU +SDy |+
min| "’ S5 b +[ZZ(FCr_i(A$aX))J+ZPS-[ZZFc,i(Pi,st)““zzcvs.t}
ZP _CVJ t i 5 t i i v
r v

(5.1

_ 2
Fo i (pir)=a; +beipig +<cipg;
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Where a, b. and ¢ are the cost coefficients. The nonlinear production cost function
can be approximated by a set of piecewise linear blocks as described in the previous
chapters. The second term in (5.1) denotes the startup cost (SU), which is a function of
the length of time that the thermal unit has been off. The startup cost is given as:

oﬁ”/ﬂi

—_—X.
SUj, :[it[l_li(t—l)jl a;+pi(l—e 1 )

Where « is the integrated cost of for startup and equipment maintenance, S is the
startup cost of unit when initiating from cold conditions, X °ffis the number of hours that
the unit has been Off, and A; is the thermal time constant that characterizes the cooling
speed of the unit. Similarly, the shutdown cost (SD), which is formulated as SD;; = kPy,
here k is the incremental shutdown cost. The operation cost of EVs, C, depends on the

number of vehicles and charging/discharging depth and frequency [Khol2]. Further,

F cr ; (Ai";ax) represents the hourly cost of corrective action.

The wind curtailment happens when there is an inadequate ramping down
capability of thermal units or major transmission congestion for utilizing the available
wind energy in electric power systems. The wind curtailment constraint is given in (5.2)
in which the sum of dispatched and curtailed wind power is the same as the wind power

forecast.

Pyt + 8 w0 =P i (5-2)

The thermal unit generation range (5.3) implies that once committed (/=1), the
generation unit must operate between its min and max generating capacity. If /=0, the

unit is de-committed.
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P.

l,minli,t < Pi,l <5

imax iy ViVE (5.3)

Equation (5.4) denotes min off time indicating that a unit must be off for a certain
period before it can be turned on again. Equation (5.5) denotes that a unit must be on for

a certain period before it can be turned off, representing min on time constraint.

-1 ra-rign)z0 i (5.4)
{X?’(’Z_])—T?n]*[li(t—l)—ll-t}ZO ViVt (5.5)

System ramp up/down limits between adjacent hours are demonstrated by (5.6)-
(5.7). Equation (5.6) conveys that when unit i starts up at time ¢, its generating output
(P;) is equal to the minimum generating capacity of unit (pm»), while (5.7) conveys
when unit / is shutting down at time ¢, its generating output (P;_1)) is equal to the

minimum generating capacity of unit (pm») [Sha05].

By =Py 1_1)5[1—1,-,(1 ~Iy t_l)]UR,- +1I; (1 -1y t—])JPi,min Vi,V (5.6)

Py =t S{1“11'@—1)(1‘1” )JDRI' iy (1= Lie) Fomin 3V (5.7)

Equation (5.8) indicates that the daily emission is capped. Carbon dioxide (CO»)
and carbon dioxide equivalent (CO,e) are assumed the primary concerns in this study.

The emission function, as a convex quadratic function of power generation, is modeled

14, Ap:-N=qa.. .p. .p2
as’: Fy ; (pzt ) =dp;+b,iPjy +CeiPjy

“Emission functions are computed using historical generator data. For each thermal units, heat curve
(MBTU/MW) and (MBTU/Metric Tons of emissions) are considered with their interactions computed as
emission curve (MW/metric tons); the curves are piecewise linearized. Slope of segments indicate
the incremental emission for each unit.
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Where a,,, b, . c, represent emission coefficients' of unit i.
sz FET(p.  +SUET L SDET | < prsg ET Vi, ET = {CO, &CO,, | (5.8)
= 2 e Pin T et T e |5 EMYmax i e :

Emission constraints are coupling constraints over a group of generating units and
period of study. The startup/shutdown emissions denoted by SU. and SD. The nonlinear
emission function is piecewise linearized and incorporated into the proposed MILP
formulation.

The system power balance and dc power flow constraints are expressed by (5.9)-
(5.11), respectively. The power flow (5.10) indicates that the transmission flow is
dependent on the voltage angle difference between the corresponding buses and the line

impendence. The power flow is limited by (5.11).

PN TRDNTEDNEVEND) Pg,+ Y PL,- ¥ PL, Vi, vt (5.9)
i v w deDb IELf,b leLt,b
e;,-6,
PL;, , = MENNCS line 1 is from bus j to bus o (5.10)
1.t on
max
Ly, |< PL (5.11)

The EV fleet constraints are expressed by (5.12)-(5.19) where (5.12) conveys the
net hourly absorbed/injected energy and the dispatched power of EV fleet. Here, the
difference between the energy stored in the aggregated EV battery and the EV energy
injected back to the grid is measured by the charging cycle efficiency of the aggregated

EV.
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{
E\’Zf = '7\"PC.VJ - Pdcg\z_[ (5.12)
Py =Feve— Pdc,v,t

Once an EV fleet is connected to the clectric power system (Ny,=1), the
aggregated battery will be charged, discharged, or remain in the idle mode (5.13).
Lge s eyt Hiyy =Ny (5.13)

Charging and discharging constraints for preserving the battery life are given as

(5.14) & (5.15):

Ic,v,t _Pg‘x}m < Pc,v,t = Ic,v,t -Pcrf%:ax (5.14)
min max
LaewrTgery SLdcws <Ldev ey (5.15)

Energy balance per hour is ensured by (5.16).
Eyy=E, g+ E"th (5.16)

Energy range of each aggregated unit is addressed in (5.17)-(5.18) representing

the capacity limit in each fleet.

En < E, , < EPRX (5.17)

Eyo=EuNT (5.18)

The piecewise linear function of convex charge/discharge cost curve of EV
batteries is expressed by (5.19) which shows a direct correlation with the number of
vehicles and the depth of charging/discharging cycles. A higher depth in battery
charging/discharging causes the number of cycles to failure decrease dramatically, which
corresponds to an increase in the cost of EV charging/discharging [Tom07].

The nonlinear battery charging/discharging cost curves which are convex
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quadratic functions are piecewise linearized in the MILP formulation. A tighter piecewise
linear estimation is presented in [KhO12]. The assumption that the aggregated state of
charge (SOC) of batteries is set to be fixed at specific operation periods is addressed by

(5.20).

Cv,t =N vt -l:%bm,v-P m,v,ti} 0<h my,i <h %}%X

(5.19)
Nyt -lEv,t - Ev,t—l 1 =n21P my,i

E, 7 =EJ (5.20)

The system and generating unit constraints in the MCS scenarios comprise those
that are similar to base case constraints, except the base case variables are replaced by
scenario variables. The scenario constraints for EV fleets are demonstrated in (5.21)-

(5.33). We consider an expected emission limit (5.34) for scenario emission constraints.

Cot =Ny -{me,v-P,f,,v,t } 0< Py ¢ S PST.NEY
" (5.21)
A) A _ S
NV,t . Ev,t - Ev,t—l} ‘mZPm,v,t
Enet,s =7 pS  _psS
! vievt
? s ‘ vs et (5.22)
Pv,t = Pc,v,t _Pdc,v,t
s S A -
Taews Heve vy =Nvs (5.23)
Nyy Loy Foy " NES S PD <Ny, A7 PO NES (5.24)
s min S < ps < s max arzS
Nog L Faoy NE <Py SNy L5 PR NE; (5.25)
S _ S net,s
Evr=E 1By (5.26)
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ENIN NE§ < ES, < EfP@X NES (5.27)
N . A
ES o= ES np = Eyo-NES (5.28)

The consumer-controlled scenario scheme is shown in (5.29).

P‘fi: = Efnax NES (5.29)

Equation (5.30) addresses the scenario corrective action;
_AMax » ps _r/xyS p. . < Alnax
Mg SE TUX P =0,
(5.30)

min S i S max S gl
Pi 'UXi,t‘It SPi,t SPI. ‘UXi,t'[t

The DC power flow constraints for each MCS scenario are denoted by Equations

(5.31)—(5.33). The grid connection of PEV fleet at time t is illustrated by B;, in equation

(5.32).
) d,s s 0

> Pz‘bt + ¥ P\}St + X Pvf/t = 3 PD’ + Y PL] - Y PL (5.31)
. y L] v 9 9 ,l l,t l’t
zeB[’) veBb,t weB[‘;’ deDb IELf,b IELt,b

o3 —BSt

- 7S s _| Lt 0y _1vSs

Ml UYl,t) < PLl,t —————————on <M UYl,t) (5.32)
_prmaxyrys s maxy rys

PLI UYl,t < PLl,t < PLI UYl,t (5.33)

2
b[ -ET ET , spET ET. ETS | gpETS ET
X3P | FET(pyyy+sUEL +SDe’l.t}+§ P8 FETS(pyyy + SUETS + SDETS | Expected( EMS iy 4

(5.34)

The flowchart of the proposed stochastic SCUC formulation is demonstrated in

Figure 5.1. The two-level hierarchical structure of the MILP problem makes it a suitable
candidate for BD. Indeed, decomposition is the only feasible option for the solution of the
large-scale stochastic SCUC problem in real time [Sha05]. Considering the stochastic

nature and the practical size of the SCUC problem involving hundreds/thousands of
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generating units and transmission lines and multiple study hours, BD would decompose
the original large-scale MILP problem into one integer program master (MIP) problem

and several linear programing (LP) sub-problems.

Input data of Thermal Units, Transmission Lines, L.oad, and EVs J

v

Generating Scenarios: wind and load uncertainties, random outages,
variations in number of Evs in each fleet, disparities in energy consumption

| Find optimal commitment and dispatch (MIP) -

E Infeasible §
o x¥BS| UC & ED Master Problem | |
s O
] t wy
E ! 3
: ’ Network Evaluation Sub-problem ; S
' . [=4]
: = 2
| 2
H -~ H (]
: . YES :

: <_ Violation? >

_ Base Case

S Parallel network security check

Network security
- . ¢ improvement with
scenario s

1

: Network security
: improvement with
: | scenario 1
H

YES

Scenario Security Check

I
Final Optimal Solution }

Figure 5.1. Stochastic SCUC for the Coordinated Scheduling of Constrained Thermal,
EV, and Renewable Units
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The master problem solves the hourly UC with dominant constraints. The lower
bound solution of the master problem would involve fewer constraints. The sub-problems
will examine the DC power flow according to the master problem’s UC solution in the
base case and all scenarios for minimizing transmission flow violations. Transmission
networks, which are assessed independently for the base case and all scenarios, can be
optimized in parallel. If any violations arise, the corresponding feasibility cuts are

generated and added to the master problem for the solution of the next iteration.

Accordingly, a new lower bound solution of the original problem will be attained
by re-calculating the master problem with more constraints. The process continues until
all violations are mitigated. The optimal solution for the original problem will be
achieved when upper and lower bounds are adequately close; which will confine the final
solution to be close to the global optimal solution of the original problem [Sha05]. The
iterative process between the master problem and sub-problem delivers a minimized cost
solution for generation scheduling while addressing transmission, voltage, and emission

constraints.

5.2 Numerical Results

In this section, a 6-bus electric power system, shown in Figure 5.2, is utilized to
demonstrate the effectiveness of the proposed day-ahead solution. The examples
investigate the coordination of wind-EV fleets at bus-level and system-level on the hourly
commitment and dispatch of coal and natural gas units. Furthermore, total expected
operation cost, base cost, capacity cost, total diurnal expected emission, base and

expected wind energy curtailment are evaluated.
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5.2.1 6-Bus System. The 6-bus system incorporates two coal units (G1,G2), one
natural gas unit (G3), and a wind turbine. G1-G3 units are least to most expensive
units, with most to least pollutant, respectively. The installed wind capacity is 75 MW,
which is about 30% of the system peak load. Furthermore, the system includes 7

transmission lines.

T LI 3

—
®

G3

Figure 5.2. 6-Bus Electric power system

The parameters of generating units, transmission lines, and hourly load forecasts
for 24-hours are depicted in Tables 5.1 and 5.2 and Figure 5.3, respectively. Table 5.3

shows the emission function coefficients.

Table 5.1. Thermal Unit Characteristics

Unit a b c P min Pinax SU SD Min. Min
($/MW?) ($/MW)  ($/h) (MW) MW) $) ($) Up(h) Dn.(h)

Gl 0.099 6.589 2114 100 320 100 50 4 3

G2 0.203 7.629 2174 10 160 200 40 3 2

G3¢ 0.089 6.58 2104 10 220 10 80 1 1

G3° 0.494 10.07 102.8 10 100 30 10 1 1
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Table 5.2. Transmission Line Characteristics

Line ID From Bus To Bus Impedance (p.u) Capacity (MW)

1 1 2 0.17 356

2 i 4 0.258 35.6

3 2 4 0.197 78.54
4 5 6 0.14 110.36
S 3 6 0.018 69.42
6 2 3 0.037 26.70
7 4 5 0.037 16.02

The following 4 cases are examined in which the diurnal emission cap of 86,300

pounds and diurnal expected emission cap of 175,000 pounds is imposed in all cases.’®

Case 1: Stochastic SCUC with two coal units and one natural gas unit considering
environmental externalities

Case 2: Stochastic SCUC with two coal units, one natural gas unit, and one wind
turbine considering environmental externalities

Case 3: Intelligent integration of stationary EV fleets and wind generation, and
their coordination in the hourly stochastic SCUC solution considering
environmental externalities.

Case 4: Rule-based integration of stationary EV fleets and wind generation, and
their coordination in the hourly stochastic SCUC solution considering

environmental externalities.

6 . L . L ‘ o . .
" Daily emissions are computed using historical generator data. Daily emission cap is also imposed based on the historical data.
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Table 5.3. Emission Function Coefficients

Unit a b ¢
(8/1b%) ($/1b) ($/h)
Gl 0.000304 19.943 0.0
G2 0.000312 18.933 0.0
G3°¢ 0.000351 10.032 0.0
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5.2.2 Case 1: Stochastic SCUC with two coal units and one natural gas unit

considering environmental externalities. In this case the coordination between 2 coal

units (G1, G2) and one gas unit (G3), without considering any variable renewable source

is evaluated. Load forecast errors, generation, and transmission outages are considered

random. The load projection error follows a normal distribution with a mean value that is

equivalent to the predicted load and a standard deviation of 5% of the mean value. Table

5.4 illustrates the hourly UC of generators in which all units are committed for 24 hours.

The daily base cost, availability cost, and expected cost are $121,445, $10,762,

$121,991.695 respectively.
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Table 5.4. UC Solution — Case 1

Diurnal Base Cost = § 121,445.015
Diurnal Availability Cost = $ 10,762.094
Diurnal Expected Cost = § 121,991.695

Unit Hour (1-24)

Figure 5.4 depicts the diurnal generation dispatch of thermal units, in which G1
dispatches more power to minimize the cost, while the other coal unit (G2) dispatches
less as compared to the gas unit (G3) to address the emission constraints. In Figure 5.5,
Gl emits the most emission followed by G2, and G3, respectively. The cumulative

expected daily emission in scenarios is 73,789.270 pounds.

=Gl
140 - -4+G2
_ 120 - >G3
= 100 - M
2 80 -
o 60 -
E 40 -
20 -
0

0123 456 7 8 9 1011121314151617 18 192021 22 23 24
Time (Hour)
Figure 5.4. Thermal Generation Dispatch of Units - Case 1
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Figure 5.5. Hourly Emission Trend of Thermal Units - Case 1

5.2.3 Case 2: Stochastic SCUC with two coal units, one natural gas unit, and one
wind turbine considering environmental externalities. In this case the coordination
between 2 coal units (G, G2), one gas unit (G3), and one renewable source (wind) is
examined. Wind forecast errors are considered and the wind unit generation is based on
the wind speed data and typical wind power curve. The mean daily wind speed is 10
meter per second (m/s), which follows a Weibull distribution function with Weibull
coefficient equal to 2.1. The wind turbine is assumed to have zero operation cost.

In Table 5.5, G1 and G2 are committed for 24 hours while G3, which is the most
expensive gas unit, is committed during peak times to minimize the cost. The sufficient
ramping down capability of gas unit supports the variable wind source. The daily base
cost, availability cost and expected cost drop by 16.91%, 31.92%, and 20.07% to

$100,913.29, $7,326.04, and $97,501.83 respectively.
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Table 5.5. UC Solution — Case 2

Diurnal Base Cost = $ 100,913.293
Diurnal Availability Cost = $ 7,326.035
Diurnal Expected Cost =$ 97,501.829

Unit Hour (1-24)

The natural gas unit which serves as a peak load supplier would adjust its dispatch
within minutes, which offers a potential for the integration of variable energy sources.
The wind curtailment in the base case and the expected wind curtailment in scenarios are
377.93 MWh and 107.30 MWh respectively. Figure 5.6 portrays the diurnal generation
dispatch of thermal units in which the standard deviations of generation dispatch for G1,
G2, and G3 are 13.15, 7.15, and 10.15 MW, respectively. Figure 5.7 shows that G2 and
G3 discharge less emission as compared to the previous case. The wind turbine is
followed closely by natural gas, which reduces the cumulative expected daily emission in

scenarios by 8.91% to 67,775.51 pounds.
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Figure 5.6. Thermal Generation Dispatch of Units - Case 2
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Figure 5.7. Hourly Emission Trend of Thermal Units - Case 2

In cases 3 and 4, two modes of operation are considered for the V2G deployment.
In the intelligent-controlled mode, electric power system operators control the EV fleets
charge/discharge decisions based on the system operation requirements. While in the
rule-based mode, SOCs are tuned at certain hours to showcase consumer
charging/discharging adjustments.
5.2.4 Case 3: Intelligent integration of stationary EV fleets and wind generation,
and their coordination in the hourly stochastic SCUC solution considering
environmental externalities. In order to further optimize the operation cost, abate the
emission level, and facilitate higher integrations of variable renewable energy resources,
we introduce 5 stationary EV fleets, as distributed storage, that are always connected to a
specific bus (stationary EV fleets). EVs’ energy requirements are considered random. EV
fleet characteristics include max/min capacities, SOC, and charge/discharge capacities of
aggregated vehicles. Table 5.6 denotes the characteristics of the five EV fleets consisting
of 3,400, 2000, 1,000, 1,600, and 2,000 vehicles respectively. The charging efficiency of
a fleet, i.e., ratio of energy stored in the battery to energy drawn from the power grid, is

assumed 85%.
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Table 5.6. Electric Vehicle Fleet Features

EV Min Max Min Max a b ¢

Fleet Cap. Cap. Charge/Discharge Charge/Discharge (/MW ($/MW)  ($/

No. (MWh) (MWh) (kW) (kW) h)
1 13.152 65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0

Table 5.7 illustrates the hourly UC of generators in which the hourly commitment
of G3 is reduced by four hours; only committing during peak hours. The introduction of
V2G into the electric power system would reduce the diurnal base cost, availability cost
and expected cost by 5.41%, 63.48%, and 6.29% to $95,457.61, $ 2,675.73, and $
91,372.30.

Further, the base case and the expected wind curtailment in scenarios are

ameliorated to 210.77 MWh and 90.51 MWh correspondingly.

Table 5.7. UC Solution — Case 3

Diurnal Base Cost = $ 95,457.611
Diurnal Availability Cost =$§ 2,675.725
Diurnal Expected Cost =$ 91,372.304

Unit Hour (1-24)

GT1 11 11t 111111 1 1 1 1 1t 11 1 1 1 1 11
G2 +1 111111ttt 11 111 1t 1 1 1 1 1 1 1
G3 00 0 00 0 0 0111 1 11 1 1 1 10 0 O O 0 0 O

Figure 5.8 shows the generation dispatch profile which indicates that the standard
deviations for the dispatch of G1, G2, and G3 are reduced to 7.88, 2.79, and 10.83 MW,
respectively; implying a smoother generation profile as compared to that in Case 2. The

generation dispatch volatility could escalate the grid operation cost caused by turbine
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wear and tear. As such. a flexible EV control can moderate the volatility when integrating
renewable resources into the grid. Figure 5.9 demonstrates the stacked daily diurnal
emission dispatch of generators is declines to 67,322.37 pounds as compared to previous

cases due to a wider usage of wind energy and the EV storage at peak hours.
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Figure 5.8. Hourly Generation Dispatch - Case 3
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Figure 5.9. Hourly Emission trend of Thermal Units — case 3

5.2.5 Case 4: Rule-based integration of stationary EV fleets and wind generation,
and their coordination in the hourly stochastic SCUC solution considering
environmental externalities. In this case consumers enforce further constraints on

charge/discharge of EVs. As such, the base case operation cost, availability cost, and
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expected cost are increased, in comparison with Case 3, to $96,097.86, $4,273.43, and
$93,084.26. In addition, base case and the expected wind curtailment in scenarios are
22291 MWh and 90.18 MWh respectively; here, the base case wind curtailment is
increased as compared to the previous case. Table 5.8 displays the hourly UC in Case 4 in
which the commitment of G3 is decreased by one hour.

Table 5.8. UC Solution — Case 4

Diurnal Base Cost = $ 96,097.805
Diurnal Availability Cost=$ 4,273.427
Diurnal Expected Cost = $ 93,084.255

Unit Hour (1-24)

1
G3 00 0 OO0 O O 0OOC 1 1T 1 1 1 1 1 0 O O O O O O

In Figure 5.10, the standard deviations of generation dispatch for G1-G3 is
increased to 11.11, 5.71, and 10.10 MW, indicating sharp disparities in the generation
profile of G1 and G2 in comparison with those in the previous case. Figure 5.11 shows
the aggregated daily emission dispatch of generators in which the diurnal aggregated
expected emission is slightly higher than that in the previous case, which is due to less

efficient use of EV fleets.
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Figure 5.10. Hourly Generation Dispatch - Case 4
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Figure 5.11. Hourly Emission Trend of Thermal Units — Case 4

Table 5.9 summarizes the optimal diurnal base case cost, wind curtailment, and

aggregated emission in each case.

Table 5.9. Summary of Results for Four Cases — Base Case

Case Cost (§) Wind Curtailment (MWh)  Emission (Pounds)

1 121,445.06 NA 73,789.270
2 100,913.29 377.93 67,775.51

3 95,457.61 210.765 67,322.365
4 96,097.86 222914 67,767.739

Figure 5.12 shows the aggregated hourly load dispatch in the base case, with and
without the intelligent V2G deployment. We do not consider the transmission congestion
here in which the V2G facilitates a cheaper energy delivery at peak hours. At off-peak
hours when LMPs!” are lower, the EV fleets are either charged or in the idle mode, and as
such the demand is higher. At hour 10 when the LMP increases at peak hours, EV fleets

would supply power back to the system which would lower the aggregated demand. So

" LMP is the Locational Marginal Price which expresses the hourly price at each bus.
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the distributed storage through V2G could accommodate the variability of renewable

energy resources for supplying the hourly demand.
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Figure 5.12 Hourly Aggregated Load with and without Storage - Base Case

5.3 Conclusion

This chapter suggested a stochastic programming framework for the day-ahead
scheduling in electric power systems with coordinated wind, EV fleets as distributed
storage, and thermal units considering system and operation uncertainties. The proposed
model is driven by its environmental benefits and operational effectiveness. Further, the
flexibility of the proposed model makes it suitable as a support tool for the V2G
implementation in practical applications. The coordination between EV fleets and
variable renewable sources provides the energy sector with a practical tool to spearhead
environmental, social, and economic pillars of sustainability. It also provides potentials
for filling out the gap between the energy path the world is on and an energy pathway
harmonious with a 2DC climate goal.

Understanding and gauging the impacts associated with the introduction of EV
fleets as virtual power plants is essential to guide a society’s energy policy; hence, this

paper was instigated to support decision-makers to facilitate a more effective transition to
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new energy architectures. Our simulation results indicate that the intelligent integration of
EV fleets as stationary distributed storage facilities could cut the diurnal operation cost,
abate the emission from fossil fuels, and enable superior consumption of forecasted wind
with minimal wind curtailment.

The intelligent V2G implementation is an especially promising method for
ensuring that the renewable energy supply would match the hourly demand, smoothening
out the variability of resources, and providing a long-term, decentralized form of
electricity storage in electric power systems. Although distributed storage systems are
much smaller than conventional energy sources for providing base firm capacity, they
demonstrate advantageous technical and economical features when providing short-term
power. Further, our analyses points out that intelligent V2G technology have the potential
to make a paradigm shift in a number of fundamental ways we operate electric power
systems including: delaying the installation of conventional peak generation capacity,
encouraging the installation of renewable electricity sources, and accelerating the
adaptation of electric transportation technologies. An expansion of the proposed model
in a larger scope considering the mobility of EVs would demonstrate a lower emission

when conventional vehicles are replaced gradually with EV fleets.
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CHAPTER 6
SPEARHEADING THE PUSH TO FULFILL LARGE ENERGY DEMAND
REQUIREMENTS IN A SUSTAINABLE MANNER: STOCHASTIC
COORDINATION OF THERMAL UNITS, RENEWABLE ENERGY SOURCES, AND
EV FLEETS — CONSIDERING EV MOBILITY
This chapter is outlined as follows. Section 6.2 discusses the proposed stochastic
security constraint unit commitment optimization model, in its initial (non-robust) and
stochastic (robust) formulations, considering the uncertainties involved with the mobility
of EVs. Section 6.2 investigates the effectiveness of the proposed approach, utilizing a

30-bus system, through comparison among 3 case studies. Finally, Section 6.3 sums up

the core results and conclusions of the study, and offers potential future studies.

6.1 Proposed Stochastic SCUC Optimization Model

The proposed stochastic day-ahead scheduling problem harmonizes variable
energy sources, mainly wind, with fleets of EVs, as mobile distributed storage facilities,
in an uncertain environment. In this chapter the random behavior of EVs is taken into
consideration. Further, it incorporates emission constraints to show how the
synchronization between conventional energy sources, renewable energy sources, and
fleets of mobile EVs in the power grid system can effectively satisfy power system
network requirements while achieving economic goals with substantial cutback on
carbon-footprints. The focus is on short-term operation (day ahead scheduling). The
discussed model optimizes the hourly coordination of wind-EV fleet generation with the

thermal unit dispatch. Generic Algebraic Modeling System (GAMS) software which as a
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core employs the CPLEX'® optimizer solver is utilized to implement the problem with a
dc power flow algorithm that considers network constraints.

The coordination between wind, mobile EV fleets, and conventional thermal units
is formulated as a MILP problem in stochastic SCUC. In the proposed stochastic
optimization problem, the wind energy and load forecast errors, power system outages,
number of available EVs in a fleet and their energy requirements are considered as
variables.

EVs in different locations are classified into different fleets based on their driving
characteristics. Departure and arrival locations of EV fleets, departure and arrival times at
selected locations and EV charging locations and patterns construct the EV fleets
characteristics. Each fleet consists of random number of EVs. Energy utilization,
min/max capacity, and state of charge (SOC) of an EV fleet is a function of number of
EVs and their operating characteristics. The energy utilization in a fleet is determined by
considering number of EVs and their energy requirements. SOC is the ratio of available
energy to maximum storable energy in the battery. The available energy in the PEV
battery is calculated by multiplying the given SOC by the maximum storable energy in
the battery. The driving habits in each fleet determine the charging/discharging patterns

of aggregated EVs [Kh012].

'® CPLEX optimizers are designed to solve large-scale, challenging problems quickly and with minimal
user intervention. CPLEX solves LP problems employing several alternative algorithms. The majority of
LP problems resolve best using CPLEX’s dual simplex algorithm,
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As discussed in Chapter 2, the Monte Carlo simulation method is employed in the
proposed stochastic model. Random outages in power systems are denoted by
incorporating probability distribution functions and forced outage rates. Load projection
errors, EV energy utilization patterns, and the number of EVs in a fleet are represented by
truncated normal distribution functions [Chapter 2]. Wind speed disparities are simulated
by the Weibull distribution function, auto correlation factor and diurnal pattern. Wind
forecast errors are considered and the wind unit generation is based on the wind speed
data and typical wind power curve. The mean daily wind speed is 10 meter per second
(m/s), which follows a Weibull distribution function with Weibull coefficient equal to
2.1. The wind turbine is assumed to have zero operation cost. Further, as explained in
chapter 2 forward and backward algorithms are established to cut the number of scenarios
with an acceptable precision. The convex operation cost of aggregated PEVs would be
subject to the number of vehicles and charging/discharging cycles [Tom07].

The objective function (6.1) minimize the operation cost, in which the projected
quantities of load, wind, and EV batteries are included, subject to system and generating
unit constraints and uncertainties. The objective function consists of the base case
operation cost, including generation cost of thermal units, startup and shutdown costs of
thermal units, and the operation cost of EV fleets; in which outages of generators and
transmission lines are not included. Moreover, the availability costs for facilitating
spinning reserve in Monte Carlo scenarios are taken into consideration in the objective
function. The payment to the generators that facilitate spinning reserve refers to as the
availability cost. One third of the marginal cost of a generating unit is considered as

availability cost [Gan03].
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In response to the existence of uncertainties, the provision of reserve is exercised
as a remedial action by generators. Generators capability to provide remedial actions are
bounded by their ramp up/down limitations. The objective function also considers the
expected cost of remedial actions in scenarios for accommodating uncertainties. Thermal
units are assumed to be non-quick start units; as such their scenario commitment status is
the same as that in the base case. So no extra startup/shutdown costs are introduced in
scenarios.

Further, since wind farms usually have trivial operation costs, we consider a no
cost operation for wind energy units in the objective function. The system and generating

unit constraints in the base case are demonstrated in (6.2)-(6.21).

ZZ(prCJ(p[’,)-fSUu +SD,~,,)+
e . max : . .
m SSpbC, +[§§<Fc.i<Ai,, ))]+§P .[gch,,-(H,,)@gcv,,}

1 v

(6.1)
Fei(Pit)=a; +bcipit +CciP,-2,

Where a, b, and c are the cost coefficients. The nonlinear production cost function
can be approximated by a set of piecewise linear blocks as described in the previous
chapters. The second term in (5.1) denotes the startup cost (SU), which is a function of
the length of time that the thermal unit has been off. The startup cost is given as:

_ XA

> o
SUj, =1it[l—li(t——l)} a;+ fB;(1—e 1 )

Where a is the integrated cost of for startup and equipment maintenance, g is the

startup cost of unit when initiating from cold conditions, X °%is the number of hours that

the unit has been Off, and 4, is the thermal time constant that characterizes the cooling
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speed of the unit. Similarly, the shutdown cost (SD), which is formulated as SD, = kP,
here k is the incremental shutdown cost. The operation cost of EVs, C,, depends on the

number of vehicles and charging/discharging depth and frequency [Khol2]. Further,

Fcri(Al.”;aX) represents the hourly cost of corrective action.

The wind curtailment happens when there is an inadequate ramping down
capability of thermal units or major transmission congestion for utilizing the available
wind power in power systems. The wind curtailment constraint is given in (6.2) in which

the sum of dispatched and curtailed wind power is the same as the wind power forecast.
Pt Bgwt =Lfwi (6.2)

When there is an inadequate ramping down capability of thermal units or major
transmission congestion for utilizing the available wind power in power systems the wind
curtailment takes place [Lew11].

The thermal unit generation range (6.3) implies that once committed (/=1), the
generation unit must operate between its min and max generating capacity. If /=0, the
unit is de-committed.

P

iminfic <8t < Fmaxliy ViV (6.3)

it=
Equation (6.4) denotes min off time indicating that a unit must be off for a certain

period before it can be turned on again. Equation (6.5) denotes that a unit must be on for

a certain period before it can be turned off, representing min on time constraint.

=1 i rign)zo i (6.4)

[ X%_])_T?n}*[ Iig-n~1;]20  vivt (6.5)
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System ramp up/down limits between adjacent hours are demonstrated by (6.6)-
(6.7). Equation (6.6) conveys that when unit i starts up at time 7, its generating output
(P;i) is equal to the minimum generating capacity of unit (p,.,), while (6.7) conveys
when unit / is shutting down at time /, its generating output (P;_)) is equal to the

minimum generating capacity of unit (pm») [Sha05].

P —Pl.(t_l)s{]—li,(l—Ii(t_l)}URi +1; [1—11.(1_1)J1>i’mm ViVt (6.6)

Pi(t_l) - P, s[l—]i(t_l)(l ~1I; )}DR,- +1i(t_1)(1~1,-t )Pimin Vi, Vit 6.7)

Equation (6.8) indicates that the daily emission is capped. For the purpose of this
study, the primary concerns are carbon dioxide (CO;) and carbon dioxide equivalent

(COz¢). The emission function, as a convex quadratic function of power generation, is

_ 2
modeled as'®: Fe,i (Pit ) =dyi +bejpit + Cei Py

Where a,;, b,,, c, represent emission coefficients®® of unit i.
2224 FET(p. + SUET + SDET | < pags ET Vi ,ET = {CO, &CO,, ) (6.8)
73 el pit) e.it ejt |~ “ max.i ’ 2e :

Emission constraints are coupling constraints over a group of generating units and
period of study. The startup/shutdown emissions denoted by SU, and SD. The nonlinear
emission function is piecewise linearized and incorporated into the proposed MILP
formulation.

The system power balance and dc power flow constraints are expressed by (6.9)-

" Emission functions are computed using historical generator data. For each thermal units, heat curve (MBTU/MW) and
{(MBTU/Metric Tons of emissions) are considered with their interactions computed as emission curve (MW/metric tons). the curves
are piecewise linearized. Slope of segments indicate the incremental emission for each unit.
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(6.11), respectively. The power flow (6.10) indicates that the transmission flow is
dependent on the voltage angle difference between the corresponding buses and the line

impendence. The power flow is limited by (6.11).

d .
YP +SP +XPy,= ¥ P4 + S PL,— Y PL, Vi, vt (6.9)
i Rk w deDb Dyt IELf,b L lELt,b Lt

g;,-6

PL; = WENRC line 1 is from bus j to bus o (6.10)
1.t on
max

[H“smy 6.11)

The EV fleet constraints are expressed by (6.12) - (6.19) where (6.12) conveys the
net hourly absorbed/injected energy and the dispatched power of EV fleet. Here, the
difference between the energy stored in the aggregated EV battery and the EV energy
injected back to the grid is measured by the charging cycle efficiency of the aggregated
EV.

net _ .
Ev,t =m0 NN ¥ de,v.t

(6.12)
P vt = £ [N P dewv,t
Once an EV fleet is connected to the power system (Ny.=1), the aggregated
battery will be charged, discharged, or remain in the idle mode (6.13).
Idc,v,t Heyytiyy =Ny (6.13)

Charging and discharging constraints for preserving the battery life are given as

(6.14) and (6.15) equations :

Loy PRN <P, <1, PERX (6.14)
min pinax
! dc,v,f'Pdcy <h devyt = ldc,v,t P de.v (6.15)
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Energy balance per hour is ensured by equation (6.16).

Eyy=E, +E) (6.16)

Energy range of each aggregated unit is addressed in (6.17)-(6.18) representing

the capacity limit in each fleet.

Emin ¢ g < pmax (6.17)
E‘I/nll’l < Evt < Evmax
Ey,o=EyNT (6.18)

The piecewise linear function of convex charge/discharge cost curve of EV
batteries is expressed by (6.19) which shows a direct correlation with the number of
vehicles and the depth of charging/discharging cycles. A higher depth in battery
charging/discharging causes the number of cycles to failure decrease dramatically, which
corresponds to an increase in the cost of EV charging/discharging [Tom07]; as for a fixed
battery price, the total energy stored by/drawn from the battery during its lifetime will
deteriorate [KemOS5b].

The nonlinear battery charging/discharging cost curves which are convex
quadratic functions are piecewise linearized in the MILP formulation. A tighter piecewise
linear estimation is presented in [Khol2]. The assumption that the aggregated state of
charge (SOC) of batteries is set to be fixed at specific operation periods is addressed by
(6.20).

Cv’t - Nv’t.(izbm,v.Pm’v’t} 0 < Pm,v’l < P’l”?r:e,x
m (6.19)

Ny s{Evs =Eyy | =>Pmvs

E,p =E (6.20)
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It 1s assumed that the SOC is at 100% when a PEV fleet is departing the station.

The system and generating unit constraints in the Monte Carlo scenarios comprise
those that are similar to base case constraints, except the base case variables are replaced
by scenario variables. The scenario constraints for EV fleets are demonstrated in (6.21)-

(6.32).

ma
C\f, =Ny {%”m,v-%,v,f} 0< Prfuv,t < P .NEY

(6.21)
S X _vpS
Nv,t' Ev,t - Ev,z_l ' ”%Pm,v,t
Enet,s =7 .PS _PS
’t v v ’t
T de.vi (6.22)
Pvat = Pc7v>t - Pdc,v,t
Iflc,v,t +]CS‘,V,I +]ltv,v,t =Ny (6.23)
Ny IZy (PEVNES S PY SNy 7 PN NES (6.24)
s min nps « ps s max apS
Nv,t i de.v, t'P de.v NE, <P dev.t SNy devit P ey NE; (6.25)
s _ps net,s
Ev,t = Ev,t-—l - Ev,t (6.26)
EMin yps < ES, < EM®X NE (6.27)
s _ S - s
Ev,O = Ev, NT = E o-NEy (6.28)
Equation (5.30) addresses the scenario corrective action;
max S Ky max
—Ai,t = Pi,t n UXz‘,z'Pi,t = Ai,t
(6.29)

min s ji o pS ~ pmax s gi
P; ‘UXi,t'[t —Pz,t <P; 'UXz,t'It
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The DC power flow constraints for each Monte Carlo scenario are denoted by
Equations (6.30)—(6.32). The grid connection of PEV fleet at time t is illustrated by B}, in

equation (5.30).

S P+ ¥ P+ T OPS,= ¥ PAY+ 3 PIS,- T PL (6.30)
IEB[IJ b veB[‘)’J eB[‘;’ deDb IELf,b leLtb
05 65,
~M.(1-UYf )< PL} - SO < M (1-UYE) (6.31)
g on 1t
~PLMAXUYS < PIS < pIMAXyyS (6.32)

/ It 1.t 1 N

An expected emission limit is considered for scenario emission constraint (6.33).

;E P FE (pyy+SULET +SDETJ+ZPS | FETS(pypy + SUERS +SDETS |5 Expectea(EMS L )

(6.33)

The two-level hierarchical structure of the MILP problem makes it a suitable
candidate for BD. The flowchart of the proposed stochastic SCUC formulation is

demonstrated in Figure 5.1.

6.2 Numerical Results

In this section, the IEEE?' 30-bus power system is utilized to demonstrate the
effectiveness of the proposed stochastic day-ahead solution. The examples investigate the
coordination among thermal units, wind, and mobile-EV fleets at bus-level and system-
level and its impact on the hourly commitment and dispatch of generation units.
Furthermore, total expected operation cost, base cost, capacity cost, total diurnal expected

emission, base and expected wind energy curtailment are taken into consideration.

*' IEEE stands for Institute of Electrical and Electronics Engineers
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6.2.1 IEEE 30-Bus System. The 30-bus system incorporates 6 thermal units, and a
wind turbine. The installed wind capacity is 150 MW, which is about 30% of the system
peak load with an hourly average wind generation of 11.7%. Furthermore, the system
includes 41 transmission lines. The data are given in

http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm. Forced outage rates

of thermal generators and transmission lines are 4% and 1%, respectively.

Using the Monte Carlo simulation, 3000 scenarios are generated and scenario
reduction techniques are used to obtain 12 scenarios. The parameters of generating units
and emission function coefficients are depicted in Tables 6.1 and 6.2.

Table 6.1. Thermal Unit Characteristics

Unit a b c Pmin Pinax SU SD Min. Min
($/MW?)  ($/MW) ($/h)  (MW)  (MW) %) ($) Upth) Dn.(h)
Gl 0.099 6.589 2114 100 320 200 50 4 3
G2 0.203 7.629 2174 10 160 150 40 3 2
G3 0.089 6.58 2104 10 100 50 10 1 1
G4 0.494 10.07 102.8 10 320 200 50 1 1
G5 0.494 10.07 102.8 10 320 200 50 1 1
G6 0.494 10.07 102.8 10 320 200 S50 1 1

Table 6.2. Emission Function Coefficients

Unit a b ¢
($/1b%) ($/1b) ($/h)
Gl 0.000304 19.943 0.0
G2 0.000312 18.933 0.0
G3 0.000316 16.745 0.0
G4 0.000320 15.842 0.0
G5 0.000340 12.432 0.0

G6 0.000351 10.032 0.0



http://www.ee.washington.edu/research/pstca/pf30/pg
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EV fleet characteristics include max/min capacities, SOC. and charge/discharge
capacities of aggregated vehicles. Table 6.3 illustrates characteristics of five EV fleets
consist of 3,400, 2000, 1,000, 1,600, and 2,000 vehicles, respectively. The charging
efficiency of a fleet, is assumed 85%. Table 6.4 shows the EV fleet travel characteristics
in the power system under investigation. The required energy for driving in one direction
is assumed the same as that of returning to the origin location. Energy requirements for
the EV fleets are different. The driving distance by an EV fleet is 12,000 miles annually
with a 32.88 miles diurnal average [Sab], [Roe08]. The required energy by an EV is 9
kWh/day with an average of 3.65 miles’lkWh [Tom07]. Accordingly, the energy required

by the fleets is 7.65, 9.00, 2.25, 7.20, and 4.50 MWh respectively.

Table 6.3. Electric Vehicle Fleet Features

EV Min Max Min Ma.x a ) b ¢
I;IIeOejt ( 1\33&) ( I\(/ia\l)\};il) Chargcz ;Rhi/s)charge Chargz(le\l/s)charge (/MW ($/MW) (};S)/
1 13.152  65.76 7.3/6.2 24.8/21.08 0.17 8.21 0
2 10.96 54.8 7.3/6.2 14.58/12.4 0.20 8.21 0
3 5.48 27.4 7.3/6.2 7.29/6.2 0.41 8.21 0
4 8.768 43.84 7.3/6.2 11.67/9.92 0.25 8.21 0
5 10.96 54.8 7.3/6.2 14.58/12.4 0.20 821 0
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Table 6.4. Electric Vehicle Travel Characteristics

First Trip Second Trip

EV Number

Fleet of Departure Arrival Departure Arrival

No.

EVs Time Bus Time Bus Time Bus Time Bus

1 3,400 6:00 21 8:00 2 17:00 2 19:00 21
2 2,000 7:00 30 8:00 4 16:00 4 17:00 30
3 1,000 5:00 24 7:00 12 16:00 12 18:00 24
4 1,600 5:00 17 6:00 15 17:00 15 18:00 17
5 2,000 7:00 19 9:00 8 18:00 8 20:00 19

6.2.2 Case Studies. The following 4 cases are tested in which the diurnal emission cap

of 86,500 pounds and diurnal expected emission cap of 192,000 pounds is imposed in all

cases.??

Case 1: Stochastic SCUC with thermal generation units, and a wind unit,
considering environmental externalities

Case 2: Stochastic SCUC with thermal generation units, a wind unit, and EV
fleets as intelligent stationary storage facilities, considering environmental
externalities

Case 3: Stochastic SCUC with thermal generation units, a wind unit, and EV
fleets as intelligent mobile storage facilities, considering environmental

externalities (Intelligent-V2G)

Table 6.5 depicts the optimal expected operation cost in each of the above three cases. In

which introduction of EVs, in case 2, has dramatically reduced the expected operation

cost by 15.12%. As EVs can be synchronized with our wind turbine, store the excess

capacity during off-peak hours, and inject the stored power back to the system during

22 . . . 2 N . . . . . =
°" Daily emissions are computed using historical generator data. Daily emission cap is also imposed based on the historical data.
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peak hours in which LMPs are higher. Accordingly. reduce the expected operation cost of
the power system. Moreover, inclusion of mobility to the EV fleets (case 3), has even
further shrunk the expected operation cost as EV mobility provides EVs the option to
charge/discharge in different locations, and allows EVs to relocate the energy. As such
facilitate a smoother integration of EVs into the power system.

Table 6.5. Expected Operation Cost ($)

Case 1 Case 2 Case 3
Expected
Operation  465,979.23  393,174.31 391,954.73
Cost (%)

Table 6.6 demonstrates the optimal base case cost, wind curtailment, and emission
in each of the three cases.

Table 6.6. Summary of Results — Base Case

Case Cost ($) Wind Curtailment (MWh)  Emission (Pounds)

1 440,799.98 160.25 80,586.15
2 422,330.91 154.85 79,146.08
3 421,686.162 144.74 79,001.13

Table 6.7 displays the availability cost, expected wind curtailment, and expected
emission in each of the three cases.

Table 6.7. Expected Scenario Results

Case  Avail.Cost Exp.Wind Curtailment Exp.Emission
% (MWh) (Pounds)
1 51,253.15 93.86 78,468.380
2 29,632.46 80.26 77,961.113

3 29,380.29 69.84 77,201.80
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Tables 6.6 and 6.7 both indicate that intelligent integration of EVs as distributed storage
facilities to the power system minimize the hourly curtailments, and cut the diurnal
emissions. As V2G not only allows a smoother integration of renewable sources witch
have less carbon footprint compare to conventional units, but also reduce deployment of
more pollutant thermal units. Additionally, tables 6.6 and 6.7 show when mobility has
taken into consideration (case 3), base case cost, availability cot, base and expected wind
curtailment, and emission are even lower. Consequently, use of EVs as mobile energy
storage units provides the grid with additional reliability, cost- effectiveness, and
efficiency.

Table 6.8 illustrates the operation costs in scenarios. In which the operation costs
are lowest in the intelligent V2G case (case 3) due to a wider usage of wind energy and
the EV storage at peak hours. Accordingly, the mobility of EVs could improve the
optimal generation while addressing the fleet requirements.

Table 6.8. Scenario Costs ($)

Scenario Case | Case 2 Case 3
1 386,869.120 335,366.279 334,019.01
2 449,349.419 383,241.12 382,453.38
3 417,342.94 350,443.81 349,120.80
4 395,713.48 339,912.49 341,510.38
5 394,098.24 338,338.37 337,306.15
6 348,717.08 301,081.72 299,171.32
7 433,384.48 374,285.04 373,972.34
8 436,571.89 379.315.19 375,414.96
9 417732.24 363,691.38 362,640.40
10 416,889.74 362939.18 360,921.77
11 415,077.25 367434.78 365,974.331
12 412,249.288 357892.71 355,004.423
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Case 4: Stochastic SCUC with thermal generation units, a wind unit, and Rule-

Based-EV fleets as mobile storage facilities, considering environmental

externalities (Rule-Based-V2G)

In this case (the rule-based mode), SOCs are tuned at certain hours to showcase
consumer charging/discharging adjustments. While in the intelligent-controlled mode
(Case 3), electric power system operators control the EV fleets charge/discharge

decisions based on the system operation requirements.

Table 6.9 compares the results between cases 3 and 4. As Table 6.9 demonstrates,
base case operation cost, availability cost, expected cost, emission, and wind curtailment
all are increased in comparison with case 3 in which EV fleets are controlled
intelligently. Accordingly, simulation results imply that enforcement of additional

constraints on charge/discharge of EVs by consumers, results in less efficient use of EV

fleets.
Table 6.9. Summary of Results in Cases 3&4
Expected I Exp. Wind Exp.

Case OperationCost Bas(e$§lost A\éaﬂilzg;ty Curtailment Emission
($) o8 (MWh) (Pounds)
30 30195472 LS 938029 69.84 77,201.8

4 431,922.
400,286.06 15 34420.99 82.92 78,255.55

Figure 6.1 illustrates the diurnal EV fleets charge/discharge pattern for case 3. In
which negative numbers indicate EVs are charging during off peak hours, while positive
numbers indicate EVs are discharging or injecting power back to the system during peak

hours.
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Figure 6.1. EV Fleets Charge/Discharge Pattern — Case 3 (Base Case)

The aggregated hourly load dispatch with and without the V2G deployment, is
sketched in Figure 6.2. This figure demonstrates that at off-peak hours, in which LMPs
are lower the EV fleets are charged as such demand is higher. At hour 10 when the LMP
increases at peak-hours, EV fleets would inject power back to the system which would
lower the aggregated demand. As such, intelligent deployment of EVs as mobile energy

storage units could offer ancillary services and reduce operation costs in power systems.

440 +  —Total Load
420 - ---Load with Battery Effect

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time(Hour)
Figure 6.2 Hourly Aggregated Load with and without Storage — Case 3 (Base Case)



107

6.3 Conclusion

Future energy mix will be made of multitude of sources to fulfill the growing
energy demand. Coal, crude oil and natural gas will continue to lead the energy mix in
the short-term, as they have the most well-established infrastructures and are currently in
many locations and applications. Further in order to remain within the boundaries of
sustainable development, future energy mix should be Harnested in a cost-effective,
environmentally responsible and socially acceptable way. Renewable energy, mainly
wind and solar, can shrink emission from the electricity industry. Additionally, EVs can
be synchronized with distributed renewable sources to minimize the hourly curtailments,
and store the excess energy in their batteries. This stored energy can be used for driving
needs or can be injected in the distribution grid at a later time. Deployment of EVs as
mobile energy storage units provides the grid with additional stability, reliability, cost-
effectiveness, and efficiency. Moreover, with the higher fuel efficiency of EVs, the
transportation and power generation sectors can collectively cut their ecologically
harmful emissions and strengthen their reliance on environmentally friendly energy
sources.

The intelligent V2G implementation is an especially promising method for
ensuring that the renewable energy supply would match the hourly demand, smoothening
out the variability of resources, and providing a long-term, decentralized form of
electricity storage in electric power systems.

Accordingly, intelligent V2G, unlocks numerous potential benefits of large-scale

penetration of renewable sources, optimize the grid operation cost, and significantly
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curbs the carbon foot print of the conventional thermal units. Further, EV mobility offers
a significant potential for load management and additional grid support.

This study opens ways to new research: One question is how could possibility of
speed-charging stations, which allow fast charging of EVs, impact our findings. This
would help both to optimally plan such infrastructure and to investigate its impact on
traffic demand and the electric grid. In addition, the robustness of the proposed model
with regard to daily and seasonal fluctuations should be examined. Finally, the model can
be used to analyze the impact of different charging infrastructures. In connection with

this, monetary aspects can also be considered such as the impact of dual tariff charging.
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CHAPTER 7

SUMMARY, INSIGHTS, AND RECOMMENDATIONS

The vibrancy and sustainability of the entire economy is extensively influenced
by the energy industry. Embraced as a key solution to the trilateral challenges of
economic supply, security, and climate change, renewable energy continues to play a
pivotal role in today’s energy stock; providing a sustainable basis for greening and
growing the economy. However, the high penetration of variable renewable generation
assets (such as wind and solar) in the electricity grid has introduced major reliability
challenges in sustainable operation of electric power systems. Coordination between
thermal units, renewable sources, and distributed storage can address these challenges.

The study in this dissertation is the application of MILP to large-scale systems; as
an example optimal operation of electric power systems is investigated. This dissertation
proposes an efficient and practical methodology that has the potential to advance energy
sector strategies regarding sustainability, keep the sector on track to address the 2DC
climate goals by 2050 while addressing natural security issues. The study investigates
the integration of aggregated EV fleets as distributed load and energy storage facilities,
known as V2G, for high penetration of wind energy, while limiting emissions from fossil
fuels.

Chapter 1 discusses importance of sustainable, secure, and low emission electric
power systems operation. Further, it provides a concrete background about electric power
systems operation, and discusses risks that are involved. Goal and objectives of this

dissertation is presented in Chapter 1 as well.
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Chapter 2 provides a big picture regarding the mathematical modeling employed
in this dissertation.

In Chapter 3 the sustainable day-ahead scheduling of electric power systems with
the integration of distributed energy storage devices is investigated. The main objective is
to minimize the hourly electric power system operation cost with a cleaner, socially
responsible, and sustainable generation of electricity. Emission constraints are enforced
to reduce the carbon footprint of conventional thermal generating units. The stationary
electric vehicles (EV) are considered as an example of distributed storage and V2G
concept is considered to demonstrate the bilateral role of EV as supplier and consumer of
energy. Distributed battery storage can ease the impact of variability of renewable energy
sources on electric power system operations and reduce the impact of thermal energy
emission at peak hours. The day-ahead scheduling of electric power systems is modeled
as a mixed-integer linear programing (MILP) problem for solving the hourly
deterministic SCUC. In order to expedite the real-time solution for large-scale electric
power systems, we consider a two-stage model of the hourly SCUC by applying BD.
Numerical simulations illustrate the effectiveness of the proposed MILP approach and its
potentials as an optimization tool for sustainable operations of electric power grids.

Chapter 4 focuses on the integration of distributed storage with high penetration
of variable renewable sources in electric power systems. This chapter analyzes the impact
of such integrations on the security, emission reduction, and the economic operation of
electric power systems. Strategies for a larger penetration of variable generation
resources without compromising the electric power system security are identified. MILP

is applied for the optimization of the day-ahead hourly SCUC. The assimilation of EVs
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(both as a provider and a utilizer of energy), renewable energy sources, and smart grid is
regarded as a low-cost, and low-emission solution to the existing challenges of electric
power systems including the means of storing large quantities of energy considering
variable renewable energy sources and large carbon footprints of conventional thermal
units. Numerical studies in this chapter to showcase the potential impacts of EV fleets as
battery storage for peak load shaving, minimizing power grid operation costs and hourly
wind curtailments, and optimizing the environmental impacts based on hourly
commitment and dispatch of thermal generating units.

Chapter 5 evaluates the potential for utilizing stationary fleets of electric vehicles
(EVs) as distributed storage, in an uncertain environment, for mitigating energy
imbalances caused by the integration of variable renewable sources in electric power
systems. This chapter shows the effectiveness of such integrations on the three pillars of
sustainability including environmental sustainability, social sustainability, and the
economic operation of electric power systems; while spearheads the push to keep the
energy sector on track to address the 2 degree Celsius (2DC) target per Copenhagen
climate agreement. Chapter 5 identified strategies for a larger integration of variable
generation resources without compromising the electric power system security in a
scenario based approach. Hourly load, wind energy uncertainties, and random outages of
generation and transmission components in the coordination between wind EV fleets are
also taken into consideration in this chapter. The efficiency and usefulness of the
developed optimization models are shown using four numerical case studies.

Chapter 6 focuses on the mobility of electric vehicles and their impact as mobile

distributed load and storage facilities on the optimal operation of network-constrained
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power systems, and their carbon footprint in an uncertain environment. Unlike
conventional storage capabilities, the grid-connection storage topography of EVs may
vary during the daily operation of power systems. Hourly load and wind energy forecast
errors, random outages of generation and transmission components, random driving
patterns of EVs are taken into consideration in this study. The synchronized integration of
aggregated electric vehicle fleets and intermittent energy sources, specifically wind
energy, in power systems is examined by stochastic security constrained unit
commitment model. Numerical results depict that intelligent integration of aggregated
fleets of mobile EVs in the power system unlocks numerous potential benefits of large-
scale penetration of renewable sources, optimize the grid operation cost, and significantly
curbs the carbon foot print of the conventional thermal units. Accordingly, EV mobility
offers a significant potential for load management and additional grid support.

Findings from all the above studies indicate that EV fleets as an alternate energy
storage system for electric power dispatch are a viable and marketable option for
alleviating some of the challenges plaguing the current United States power grid.
Applications of renewable energy sources and the intelligent assimilation of EV fleets (as
mobile distributed load and storage facilities) in power systems offer potentials for
alleviating peak demands, mitigating variability and intermittency of wind generation,
minimizing power grid operation costs and hourly wind curtailments, removing
transmission flow congestions as such improving the system security, and limiting the
environmental impacts of fossil fuel-based thermal generating units in the operation of

electric power systems. The proposed model is designed to establish a sustainable, low-
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carbon energy complex beyond fossil fuels and nuclear energy in an efficient, cost-
effective manner.

Overall, V2G technologies have the potential to make a paradigm shift in a
number of fundamental ways including: diminishing the installation of conventional peak
generation capacity, encouraging the installation of renewable electricity sources, and
accelerating the adaptation of new transport technologies. The implementation of such
models worldwide could reduce the global warming, eliminate energy insecurity, and
pave the road towards a greener growth. Moreover, decoupling electricity and
transportation industries, which represent main sources of greenhouse gas emission, from
their reliance on oil would enable positive changes for global prosperity. In addition,
understanding and gauging the impacts associated with the introduction of EV fleets as
virtual power plants is essential to guide a society’s energy policy; hence, this study was
instigated to support decision-makers to facilitate a more effective transition to new
energy architectures.

The proposed modeling approach opens ways to new research for instance:

e One critical question is what are the implications of this study for policy change,
and how should the presented results translate to policy design? What are the
challenges involved?

e Further, assessing the geopolitical implications of the proposed model introduce
several challenges that necessitate further investigations. For example this model
might perfectly work for smaller countries, like Denmark, but be more

challenging to implement for China.
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In addition, the robustness of the proposed model with regard to seasonal
fluctuations should be examined.

Moreover, the model can be used to analyze the impact of different charging
infrastructures. In connection with this, monetary aspects can also be considered
such as the impact of dual tariff charging.

Another question is how could possibility of speed-charging stations, which allow
fast charging of EVs, impact the presented results? This would help both to
optimally plan such infrastructure and to investigate its impact on traffic demand
and the electric grid.

Last but not least, an expansion of the proposed model in a larger scope,
considering the emission reductions from the transportation sector, would
demonstrate much lower emission when conventional vehicles are replaced

gradually with EV fleets.
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